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ABSTRACT: We assess the accuracy of basis set truncations based on
natural orbitals determined by second-order perturbation theory for
computing noncovalent interaction energies with coupled cluster through
perturbative triples [CCSD(T)]. We consider two methods for
truncation: (i) the usual frozen natural orbital approach (FNO) in
which the basis set truncation occurs before the iterative CCSD
computation [FNO CCSD(T)] and (ii) an approach in which the
truncation occurs only for the perturbative triples contribution [CCSD+FNO(T)]. The errors incurred are comparable for both
methods and are small enough for the methods to be used for benchmark-quality studies of noncovalent interactions. For the
FNO CCSD(T) method with a modest natural orbital occupation tolerance of 10−5, the mean absolute error in the interaction
energies for the S22 data set in an aug-cc-pVDZ basis set is only 0.012 kcal mol−1 versus canonical CCSD(T) values. The same
method exhibits a mean absolute error of 0.020 kcal mol−1 for the S11 data set in the aug-cc-pVTZ basis set versus canonical
CCSD(T) values.

1. INTRODUCTION
For small chemical systems, the most accurate yet practical
description of its electronic structure is usually obtained from
coupled cluster (CC) methods,1 specifically, CC with single,
double, and perturbative triple excitations [CCSD(T)], which
has come to be known as the “gold standard” in quantum
chemistry.2 Unfortunately, the unfavorable computational
scaling of CCSD(T) prevents its routine application to many
larger systems of modern chemical and biological interest. A
particularly challenging problem in quantum chemistry is the
accurate description of noncovalent interactions that arise in
DNA base stacking, protein folding, or protein−ligand binding.
The usual strategy in computing high-quality interaction
energies is a focal point analysis3,4 combining second-order
perturbation theory (MP2) at the complete basis set limit
(CBS) with a correlation correction, δMP2

CCSD(T), derived from
CCSD(T) and MP2 in a modest basis set:

δ≈ +E ECCSD(T)
CBS

MP2
CBS

MP2
CCSD(T)

(1)

δ = −E EMP2
CCSD(T)

CCSD(T) MP2 (2)

High-accuracy benchmark data sets, which are fundamental in
assessing the utility of novel theories and approximations, are
constructed in this way with δMP2

CCSD(T) computed in a basis of at
least double-ζ-quality, augmented by diffuse functions. When
possible, δMP2

CCSD(T) is more accurately determined in a basis set of
triple-ζ quality,5−8 again augmented by diffuse functions.
The improved accuracy of many recent approximate

methods9−13 necessitates benchmarks of ever increasing quality,
but obtaining δMP2

CCSD(T) in larger basis sets is often impractical
due to the steep fourth-power scaling of CCSD(T) with respect

to the size of the space of unoccupied (virtual) orbitals. One
possible solution is to adopt explicitly correlated CCSD(T)
techniques, which typically achieve high accuracy with only
augmented double-ζ basis sets. The popular F12a and F12b14,15

approximations have been applied to the S2216 test set of van
der Waals dimers. Marchetti and Werner demonstrated a mean
absolute error (MAE) of less than 0.2 kcal mol−1 for
CCSD(T**)-F12a/aug-cc-pVDZ. A more recent study7 testing
against the revised S22B interaction energies6 finds MAEs of
less than 0.1 kcal mol−1 for CCSD(T**)-F12a and CCSD-
(T**)-F12b in an aug-cc-pVDZ basis set. For a given complex,
F12a and F12b approximations tend to perform differently
depending on the binding type; by applying a binding-motif-
dependent switching function to mix the F12a and F12b
energies, the dispersion-weighted (DW) CCSD(T**)-F12
method reduces the MAE considerably.7 Despite these
successes, questions remain regarding the utility of CBS-
extrapolated CCSD(T**)-F12a/F12b interaction energies and
the quality of DW-CCSD(T**)-F12 energies for systems that
differ from the training set, S22B.
A second avenue to higher-quality benchmarks would be to

obtain δMP2
CCSD(T) in larger basis sets that are pruned to remove

high-energy, unimportant virtual orbitals, thereby making such
CCSD(T) computations possible. However, the dynamical
correlation energy converges slowly within the virtual space;
simply discarding high-energy canonical orbitals can lead to
very large errors. Several other orbital representations have
emerged as compact alternatives to canonical Hartree−Fock
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virtual orbitals. The simplest procedure truncates the virtual
space according to the population of the MP2 natural orbitals,
which are the eigenfunctions of the first-order one-particle
density matrix (OPDM).17−20 Within the context of CC theory,
these frozen natural orbital (FNO) techniques have been
shown to allow a 20%−60% reduction in the virtual space for a
triple-ζ-quality basis set while introducing errors in CCSD(T)
geometric parameters on the order of only a few tenths of a
picometer.20 Similar FNO methodologies have been applied to
the iterative CCSDT and noniterative CCSDT(Q) equations21

and to a variety of equation-of-motion (EOM)-CC methods.22

They have also been useful in earlier work on reducing the cost
of higher-order excitations in configuration interaction
(CI).23−25 Recent work has also revived interest in pair natural
orbital techniques for electron correlation methods.26,27 For a
more detailed history of the use of FNOs in CC and CI
methods, the reader is directed to ref 22.
A more sophisticated approach to obtain a compact virtual

orbital space involves the optimization of the second-order
Hylleraas functional,28 which results in the so-called optimized
virtual orbital space (OVOS).29−31 The iterative procedure to
obtain the OVOS is very closely related to the FNO procedure
described above; FNOs can be obtained from the first iteration
of an OVOS procedure before any optimization. As with FNOs,
OVOS truncations are known to reliably reduce the cost of
CCSD(T) computations without introducing significant
error.21

Several studies have investigated the utility of OVOS and
FNO representations of the virtual orbital space when treating
noncovalent interactions. Pitonak et al.32 have used OVOS
CCSD(T) methods to report the interaction energy for several
configurations of the benzene dimer up to an aug-cc-pVQZ
basis set. OVOS CCSD(T) interaction energies agree with
available quadratic configuration interaction [QCISD(T)]
energies8 to 0.03 kcal mol−1 in an aug-cc-pVQZ basis set.
Although CCSD(T) and QCISD(T) are not strictly com-
parable, they happen to agree within 0.004 kcal mol−1 for the
benzene dimer in the smaller aug-cc-pVTZ basis,8 and thus the
very good agreement between OVOS CCSD(T) and QCISD-
(T) for the aug-cc-pVQZ basis suggests that the OVOS
approximation introduces very little error for the benzene
dimer interaction energy. Dedıḱova ́ et al.33 also examined the
applicability of the OVOS CCSD(T) method to the
computation of noncovalent interaction energies. For four
small hydrogen-bonded and stacked dimers, OVOS techniques
were used to truncate the virtual space by as much as 50% while
introducing errors in the interaction energy no larger than 0.1
kcal mol−1. FNOs have been utilized within the context of
symmetry adapted perturbation theory (SAPT) studies of
noncovalent interactions,34 where they significantly reduce the
computational cost of the triples contribution to dispersion. For
the S22 test set described by an aug-cc-pVDZ basis set, the
SAPT FNO techniques allow for a 50% reduction in the size of
the virtual space utilized by the triples contribution, leading to
speedups of 15−20 times for that term. By scaling the triples
contribution, the errors over the entire test set are on the order
of only a few hundreths of a kilocalorie per mole. Finally, Kraus
et al.35 developed a method to control the accuracy of
counterpoise-corrected interaction energies within the context
of the OVOS CCSD(T) method. However, this study limited
the application of OVOS truncations to monomer computa-
tions in dimer basis sets, as would be relevant for counterpoise
computations.36 For large molecules with low (C1) symmetry,

the cost of counterpoise-corrected interaction energies is
dominated by the dimer computation; hence, the utility of
FNO or OVOS techniques must be determined for the dimer
computations also.
In this paper, we perform systematic studies of the accuracy

of two approximate CCSD(T) methods based on frozen
natural orbitals by considering 22 van der Waals dimers. We
have chosen to use FNOs (as opposed to OVOS orbitals) in
our basis set truncation due to their conceptual simplicity and
ease of implementation. Furthermore, it has been demonstrated
that the solutions obtained when utilizing FNO and OVOS
truncations differ only slightly.17,21 The first method studied
herein is what one might intuitively associate with FNO
CCSD(T). That is, the basis set is truncated before the iterative
CCSD portion of the algorithm. Second, we isolate the effects
of basis set truncation on the (T) contribution to the energy by
solving the CCSD equations in the full basis set and exploiting
the FNO truncation techniques only for the perturbative (T)
contribution. For very large systems in large basis sets, the
evaluation of (T) should dominate the computation, and thus
the cost of both methods should be comparable. In practice,
however, for the systems often studied to produce benchmark-
quality results for noncovalent interactions, a significant
amount of time is usually spent in the iterative solution to
the CCSD equations, so the first approach, if sufficiently
accurate, will be more desirable. Basis set truncation before the
CCSD iterations has the added benefit that the two-electron
integrals need not be available for the full NO basis, reducing
the cost of (i) the AO−NO integral transformation, (ii) any
out-of-core sorting of the two-electron integrals prior to the CC
procedure, and (iii) storage of the largest (v4) block of integrals,
either on disk or in the core.

2. METHODS

2.1. Basis Set Truncations. The basis set truncations
utilized herein are based on the natural orbitals of second-order
perturbation theory (MP2). For a closed-shell restricted
Hartree−Fock reference, the virtual−virtual block of the
unrelaxed MP2 one-particle density matrix (OPDM) is given
by

∑γ
ε ε ε ε ε ε ε ε

=
| − | |

+ − − + − −
ia jc ic ja ib jc

2
[2( ) ( )]( )

( )( )ab
ijc i j a c i j b c (3)

where i and j correspond to spatial orbitals that are occupied in
the reference function, and a, b, and c correspond to spatial
orbitals that are unoccupied in the reference function. The
symbol εi represents the energy of orbital i, and (ia|jc) etc.
represent two-electron integrals in chemists’ notation. This
block of the OPDM is diagonalized to obtain the virtual MP2
natural orbitals. The virtual natural orbital space is truncated
according to the eigenvalues of the MP2 OPDM which
correspond to the occupations of the NOs. Those orbitals with
an occupation below some threshold are discarded. The Fock
matrix is transformed to this truncated NO basis and then
diagonalized to obtain semicanonical orbitals. These semi-
canonical orbitals are desirable for two reasons: (i) the standard
formulas for the (T) contribution to the correlation energy
assume that the Fock matrix is diagonal, and (ii) if the CCSD
procedure is performed in the truncated NO basis, the
convergence of the equations is fastest when the Fock matrix
is diagonal.
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For the FNO CCSD(T) method, the truncated NO basis is
determined before any coupled-cluster computations are
performed. The NOs are expressed in terms of atomic orbitals,
and we perform the AO/NO transformation for all classes of
integrals required by CCSD(T). Because the weakly occupied
NOs are discarded, the FNO CCSD(T) energy exhibits some
error compared to the canonical CCSD(T) result. The largest
contribution to the missing correlation energy is approximated
at second order, and we define a correction to the FNO
CCSD(T) energy as the difference between the MP2
correlation energies in the full MO and truncated NO basis
sets:

Δ = −E E EMP2 MP2
MO

MP2
NO

(4)

Thus, the correlation energy at the CCSD(T) level in the full
basis set can be approximated as the sum of the correlation
energy in the truncated basis plus this correction:

≈ + + ΔE E E ECCSD(T)
MO

CCSD
NO

(T)
NO

MP2 (5)

The procedure for the CCSD+FNO(T) method is slightly
different but involves fewer approximations. The usual AO to
MO integral transformation is performed before the CCSD
iterations, and the CCSD equations are solved in the full MO
basis. Upon convergence, the MP2 NOs are determined as
outlined above, and all tensors required for the evaluation of
the E(T) are transformed from the MO to NO basis. The
required tensors are the T2 and T1 amplitudes, the two-electron

integrals of the type (oo|ov), (ov|ov), and (ov|vv), and the orbital
energies. The symbols o and v represent the occupied and
virtual spaces, respectively. The E(T) contribution is evaluated in
the truncated NO basis, and the total CCSD(T) energy is
defined as

≈ +E E ECCSD(T)
MO

CCSD
MO

(T)
NO

(6)

Note that eq 6 contains no correction for the basis set
truncation. In principle, the value of E(T)

MO could be
approximated by scaling E(T)

NO in a manner similar to that
proposed in ref 34, but for our supermolecular computations,
the scaled energies differed only slightly from the original
values, and the corresponding interaction energies were not
necessarily more accurate. Hence, the unscaled energy may be
more reliable.

2.2. Computational Details. The frozen natural orbital
procedures outlined above were implemented in the PSI4
electronic structure package,37 which allows users to interface
custom “plugins” to various libraries and solvers (e.g., SCF and
four-index transformation routines). The present work uses a
completely new CCSD(T) plugin interfaced to PSI4 in this
way. All CCSD(T) computations were performed within the
frozen core approximation. Both the FNO CCSD(T) and
CCSD+FNO(T) methods were applied to the S22 data set in
the aug-cc-pVDZ basis set and the subset of the 11 smallest
systems (S11) in the aug-cc-pVTZ basis set.

Figure 1. Errors in δMP2
CCSD(T) for (a) FNO CCSD(T) and (b) CCSD+FNO(T) methods relative to canonical CCSD(T) in the aug-cc-pVDZ basis set.

All errors are given in kcal mol−1.
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3. RESULTS AND DISCUSSION

The FNO CCSD(T) and CCSD+FNO(T) methods were used
to compute coupled-cluster corrections, δMP2

CCSD(T), eq 2, for the
S22 set of molecules described by an aug-cc-pVDZ basis set.
The errors in the approximate δMP2

CCSD(T) values compared to
canonical CCSD(T) values using the full MO basis are
presented in Figure 1. Dimers are labeled in the figure with
HB, DD, or MX to denote hydrogen-bonded, dispersion-
dominated, or mixed binding, respectively, according to
SAPT2+3 analysis.38 We present results using a wide range of
orbital-occupancy tolerances for determining which virtual NOs
can safely be discarded. The tightest tolerance used was 10−6,
which means that all virtual orbitals with occupancies less than
10−6 were discarded. Our most aggressive tolerance is 10−4.
The errors incurred by the FNO approximations are

negligible relative to the magnitude of δMP2
CCSD(T) for both

schemes for even the most aggressive tolerance, 10−4 (a plot of
the aug-cc-pVDZ delta corrections themselves can be found in
Figure S1 of the Supporting Information). For example, the
maximum error for the two schemes with a tolerance of 10−4 is
found for the stacked uracil dimer: 0.089 [FNO CCSD(T)]
and 0.137 [CCSD + FNO(T)] kcal mol−1. These errors are
only 7% and 10% of the canonical δMP2

CCSD(T) value of 1.262 kcal
mol−1. The MAE and maximum errors for each orbital
occupation tolerance are given in Table 1. A tolerance of
10−6 yields essentially exact results, with MAEs of 0.003 and
0.004 and maximum errors of only 0.011 and 0.012 kcal mol−1

in the FNO CCSD(T) and CCSD + FNO(T) schemes,

respectively. The MAEs for these two methods with a threshold
of 10−5 across the whole S22 data set are 0.012 and 0.023 kcal
mol−1, which are quite reasonable for reliable high-accuracy
studies. Importantly, the MAE and maximum errors do not
depend heavily on the binding motif, implying that the FNO
methods considered here should remain effective for interaction
energies of other types of van der Waals dimers that may differ
significantly from those found in the S22 set.
Perhaps the most interesting result here is the relative

performance of FNO CCSD(T) and CCSD + FNO(T). One
would suspect that, because the CCSD + FNO(T) method
involves no approximations in the solution of the CCSD
equations, the method should always outperform FNO
CCSD(T). However, for each threshold chosen in Figure 1
and Table 1, FNO CCSD(T) consistently outperforms CCSD
+ FNO(T). Figure 2 provides the errors in each component of
the FNO CCSD(T) method with an aggressive occupation
threshold of 10−4. We can see that the excellent performance of
the method is due to a fortuitous cancellation of errors in the
CCSD and (T) components of the energy. Unfortunately, there
is no guarantee that such cancellations will occur for all systems
in all basis sets.
Figure 3 illustrates the errors in the FNO CCSD(T) δMP2

CCSD(T)

as compared to canonical CCSD(T) computed for the subset
of the smallest 11 systems in the S22 set represented by an aug-
cc-pVTZ basis set. As was observed in the aug-cc-pVDZ basis,
δMP2
CCSD(T) is nearly perfectly represented in both FNO schemes
when using a very tight, 10−6, occupation threshold. Larger

Table 1. Mean Absolute Errors (kcal mol−1) for Natural-Orbital-Based Estimates of the Coupled-Cluster Correction, δMP2
CCSD(T),

versus Canonical CCSD(T) for the S22 Set Described by an aug-cc-pVDZ Basis Seta

CCSD + FNO(T) FNO CCSD(T)

10−6 10−5 10−4 10−6 10−5 10−4

H-bonded 0.004 (0.005) 0.022 (0.034) 0.048 (0.096) 0.005 (0.009) 0.013 (0.024) 0.031 (0.064)
dispersion 0.006 (0.012) 0.031 (0.076) 0.054 (0.137) 0.003 (0.011) 0.015 (0.040) 0.032 (0.089)
mixed 0.003 (0.004) 0.014 (0.029) 0.050 (0.091) 0.001 (0.003) 0.007 (0.013) 0.012 (0.018)
total 0.004 (0.012) 0.023 (0.076) 0.051 (0.137) 0.003 (0.011) 0.012 (0.040) 0.025 (0.089)

aErrors within the FNO approximation are presented using different thresholds for the occupation numbers of the retained natural orbitals.
Maximum errors are given in parentheses.

Figure 2. Errors in each component of δMP2
CCSD(T) for the FNO CCSD(T) method with an occupation tolerance of 10−4 relative to canonical

CCSD(T) in the aug-cc-pVDZ basis set. All errors are given in kcal mol−1.
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Figure 3. Errors in δMP2
CCSD(T) for (a) FNO CCSD(T) and (b) CCSD+FNO(T) methods relative to canonical CCSD(T) in the aug-cc-pVTZ basis set.

All errors are given in kcal mol−1.

Table 2. Mean Absolute Errors (kcal mol−1) for Natural-Orbital-Based Estimates of the Coupled-Cluster Correction, δMP2
CCSD(T),

versus Canonical CCSD(T) for the 11 Smallest Members of the S22 Set Described by an aug-cc-pVTZ Basis Seta

CCSD + FNO(T) FNO CCSD(T)

10−6 10−5 10−4 10−6 10−5 10−4

H-bonded 0.003 (0.006) 0.015 (0.027) 0.057 (0.067) 0.005 (0.007) 0.031 (0.038) 0.139 (0.203)
dispersion 0.001 (0.002) 0.005 (0.010) 0.029 (0.052) 0.004 (0.005) 0.017 (0.037) 0.065 (0.143)
mixed 0.002 (0.002) 0.006 (0.010) 0.058 (0.095) 0.005 (0.006) 0.011 (0.025) 0.050 (0.098)
total 0.004 (0.006) 0.009 (0.027) 0.050 (0.095) 0.005 (0.007) 0.020 (0.038) 0.087 (0.203)

aErrors within the FNO approximation are presented using different thresholds for the occupation numbers of the retained natural orbitals.
Maximum errors are given in parentheses.

Table 3. Timings (in minutes) for FNO−CCSD(T) Computations of Counterpoise-Corrected Interaction Energies for
Adenine−Thymine (WC) Described by an aug-cc-pVDZ Basis Seta

adenine−thymine adenine thymine

full 10−6 10−5 10−4 full 10−6 10−5 10−4 full 10−6 10−5 10−4

no. of virtual orbs 468 443 406 320 501 241 211 164 503 229 201 156
(ov | ov) transformation 115 119 119 109 110 112 108 110 108
form NOs 0 0 0 0 0 0 0 0 0
AO/NO transformation 253 232 197 151 263 114 107 97 271 112 108 99
CC integral sort 202 171 122 53 218 11 5 2 222 8 4 2
CCSD iterations 1398 1197 895 435 557 29 20 10 541 21 15 8
(T) 2827 2337 1580 1061 514 43 24 9 460 29 18 6
total 4680 4052 2913 1819 1552 306 266 230 1494 278 255 223

aComputations were performed using all 16 cores of an AMD Opteron 6272 CPU with access to 64 GB of memory. The number of virtual orbitals
included in each computation is also presented.
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deviations occur for FNO CCSD(T) with the aggresive 10−4

threshold than were observed in the aug-cc-pVDZ basis. The
MAE and maximum errors for both methods are given in Table
2. The maximum errors for both schemes with the most
aggressive threshold are on the order of tenths of a kilocalorie
per mole and too large to be acceptable for benchmark-quality
computations. The MAEs for the 10−5 threshold are 0.009 and
0.020 for CCSD + FNO(T) and FNO CCSD(T), respectively,
which should be acceptable as benchmark-quality solutions,
particularly if the CCSD(T) computations would not be
possible in the full MO basis.
Finally, we discuss the computational advantages of the FNO

CCSD(T) scheme. Tables 3 and 4 provide the time in minutes
required for each module involved in counterpoise-corrected
FNO CCSD(T) computations for adenine−thymine (WC) in
the aug-cc-pVDZ basis set and benzene−methane in the aug-
cc-pVTZ basis set.
In the double-ζ basis set, Table 3 shows that the number of

virtual orbitals in a dimer computation can be reduced from
468 to 406 for an occupation threshold of 10−5. With this
threshold, the cost of the CCSD and (T) portions of the
algorithm are reduced by factors of 1.56 and 1.79, respectively.
The time for the post-Hartree−Fock computation is reduced
by a factor of 1.61 relative to the full basis computation.
Because we use semicanonical orbitals, the FNO computations
typically require about the same number of iterations as
conventional CCSD. In fact, for the test cases presented in
Tables 3 and 4, all dimer computations required the same
number of iterations, regardless of FNO cutoff. The perform-
ance advantages of FNO techniques are more evident for
monomer computations in the supermolecular dimer basis,
where a threshold of 10−5 can reduce the size of the virtual
space by more than a factor of 2. For the adenine monomer, we
observe speedups in the CCSD and (T) routines of 27.7 and
21.6, respectively. Similar speedups are observed for the
thymine monomer (35.9 and 26.1 for CCSD and (T),
respectively), and we can safely conclude that the coupled
cluster portions of the monomer calculations are essentially free
(compared to the dimer calculations) in the FNO scheme.
The computational savings of the FNO scheme increase with

the size of the basis set. According to Table 4, the virtual space
for the benzene−methane dimer is reduced from 526 to 360
orbitals using a threshold of 10−5. The post-Hartree−Fock
portion of the full dimer computation is performed about 2.13
times faster using this threshold than when using the full MO
basis. The cost of the CCSD and (T) portions of the algorithm
were reduced by factors of 3.43 and 4.84, respectively. The

coupled cluster portions of the monomer computations are
again essentially free; the cost of the post-Hartree−Fock
procedure is dominated by the integral transformation.
Recall that the accuracy of the CCSD + FNO(T) and FNO

CCSD(T) methods was comparable across the entire S22 set.
The relative utility of the methods is therefore dependent on
the computational advantages afforded by each. The savings
offered by the truncation of virtual space prior to the solution of
the CCSD equations is evident from these timings; both the
CC integral sort and solution of CCSD equations greatly
benefit from the FNO truncation. The integral sort is
performed out-of-core and is thus inherently serial, while our
CCSD and (T) algorithms use OpenMP and parallel BLAS
libraries. In some cases, this serial sort requires more wall time
than the evaluation of the (T) contribution to the energy; any
reduction in the cost of the integral sort is important.
The total cost of the AO/NO integral transformation is

sometimes more expensive in the FNO CCSD(T) relative to
canonical CCSD(T). The reason for this peculiarity is that
FNO CCSD(T) requires two separate integral transformations.
First, the (ov|ov) integrals must be transformed to the MO basis
to determine the MP2 natural orbitals. Second, the full AO/NO
transformation must be performed. The cost of the second
transformation does reduce with increasingly aggressive NO
tolerances, but the cost of the initial (ov|ov) transformation
remains constant. Finally, we observe massive savings in the
amount of memory and disk space required for our CCSD
algorithm when using FNOs. The largest block of integrals in a
CCSD computation scales as v4, so by reducing the size of the
virtual space from 547 to 83 for the methane monomer in the
dimer basis, the FNO algorithm requires 1800 times less disk
space for the storage of this class of integrals. The analogous
reduction for the benzene−methane dimer computation leads
to a factor of 4.6 savings in the required disk storage. FNOs also
allow the CCSD(T) equations to be solved more efficiently
with respect to CPU time, but, much more importantly, they
facilitate computations with very large basis sets that may
otherwise have memory and disk requirements that exceed
practical hardware limitations.

4. CONCLUSIONS
Frozen natural orbital coupled cluster methods are applied to
the evaluation of interaction energies of noncovalently bound
systems. Two FNO schemes are found to yield solutions of
comparable quality across the entire S22 test set. For a modest
occupation threshold of 10−5, both FNO CCSD(T) and CCSD
+ FNO(T) yield results that can be considered of benchmark

Table 4. Timings (in minutes) for FNO−CCSD(T) Computations of Counterpoise-Corrected Interaction Energies for
Benzene−Methane (S22-10) Described by an aug-cc-pVTZ Basis Seta

benzene−methane benzene methane

full 10−6 10−5 10−4 full 10−6 10−5 10−4 full 10−6 10−5 10−4

no. of virtual orbs 526 457 360 202 531 349 277 156 547 114 83 43
(ov | ov) transformation 178 171 178 168 173 164 157 163 161
form NOs 0 0 0 0 0 0 0 0 0
AO/NO transformation 378 286 219 163 369 211 194 147 361 137 132 129
CC integral sort 293 159 72 4 317 61 30 2 306 0 0 0
CCSD iterations 411 273 120 7 494 79 13 2 332 0 0 0
(T) 281 147 58 6 153 26 11 1 19 0 0 0
total 1363 1043 640 358 1333 545 421 316 1018 294 295 290

aComputations were performed using all 16 cores of an AMD Opteron 6272 CPU with access to 64 GB of memory. The number of virtual orbitals
included in each computation is also presented.
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quality, with FNO CCSD(T) methods yielding an MAE of
0.012 kcal mol−1 for the S22 set in an aug-cc-pVDZ basis set
versus CCSD(T) using the full MO basis. For the subset of 11
smallest molecules in the aug-cc-pVTZ basis set, the FNO
CCSD(T) method yields interaction energies with an MAE of
0.020 kcal mol−1, versus canonical CCSD(T). CCSD +
FNO(T) results are slightly more accurate than FNO
CCSD(T) results in the larger basis, but the computational
benefits of the FNO CCSD(T) scheme are far greater. Our
results indicate that, for modest occupation thresholds on the
order of 10−5, FNO CCSD(T) methods consistently yield
intermolecular interaction energies of benchmark quality and
are a viable alternative to CCSD(T) computations using the full
molecular orbital basis.
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