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Preceding Material

These notes pick up from “General 
Introduction to Electronic Structure 
Theory“ by the author.

http://vergil.chemistry.gatech.edu/notes/intro_estruc_general/Electronic-Structure-Intro-General.pdf


What Hartree-Fock is for

A way to approximately solve the Electronic 
Schrödinger equation

This gives us the electronic wavefunction, 
from which we can extract dipole moment, 
polarizability, etc!

The electronic energy Eel(R) is the potential 
energy surface: gives equilibrium geometries, 
reaction paths, etc.



The Slater Determinant

We will assume the electronic wavefunction can be written

as a single Slater Detrminant (this is an approximation).  This 

enforces an antisymmetric wavefunction.  The Hartree-Fock

procedure will give us the orbitals.

Shorthand: or

John Slater
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Hartree-Fock Molecular Orbital Theory

1. Invoke the Born-
Oppenheimer approximation
2. Express the electronic 
wavefunction as a single Slater 
Determinant
3. Solve for those orbitals 
which minimize the electronic 
energy (variational method)
This winds up being 
mathematically equivalent to 
assuming each electron 
interacts only with the average 
charge cloud of the other 
electrons

Douglas Hartree V. A. Fock
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The Operators

One-electron operator: for electron i,
its KE and its attraction to all nuclei

Two-electron operator: for electrons
i and j, their Coulomb repulsion

Electronic Hamiltonian in terms of these operators:



The Hartree-Fock Energy

If the variational theorem says to minimize 
the energy, what is the energy of a Slater 
determinant?

Slater’s Rules tell us how to get the matrix 
elements of the electronic Hamiltonian using 
Slater Determinants



The Hartree-Fock Energy

One-electron integral (4-dimensional):

Two-electron integral (8-dimensional):



Physical Meaning of the Terms
Each electron contributes a one-electron 
integral

This looks like the expectation (average) value 
of the operator ĥ for an electron in orbital χ, so 
long as the orbital is normalized

Recall ĥ contains electron KE and potential of 
attraction to all the nuclei

Sum over all orbitals i to get total electron KE 
and attraction to nuclei



Physical Meaning of the Terms
Each pair of electrons (in orbitals i and j) has 
a “Coulomb integral”:

Probability electron 1 in 
orbital i is located at x1

Probability electron 2 in 
orbital j is located at x2

Coulomb repulsion between electron at
x1 and electron at x2

Integrate over all possible
locations for the electrons

Overall this integral represents the Coulomb 
repulsion between electron 1 in orbital i and 
electron 2 in orbital j



Physical Meaning of the Terms
Each pair of electrons (in orbitals i and j) has 
also has an “Exchange integral”:

This is like the Coulomb integral

Except two of the orbital indices have been 
“exchanged”!

No direct physical meaning .. consequence of 
Slater Determinant



Hartree-Fock Energy Example

Simple example: He atom
2 electrons, 1sa, 1sβ
Number the spin orbitals 1=1sa, 2=1sβ 1 2

We (typically) need a computer to evaluate these 
integrals
Is this as simple as we can get it?  
No!  The last integral is zero.  Why?



Spin Factorization and Spatial Orbitals
Recall each spin orbital (x) is a function of 4 
coordinates: (x,y,z,)
We normally write each spatial orbital as a product of a 
spatial part (r) and a spin part, which we might call 
(), i.e., (x) = (r) () [recall r = {x,y,z}]
The operators in Hartree-Fock theory, ĥ and 1/r12, do not 
depend on the spin coordinate
That means an integral over x can be factored into a 
simple integral over the spin coordinate  (no operators) 
times a more complicated integral (involving operators) 
over the spatial coordinates r, e.g.,
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Spin Factorization of 2-elec Integrals

We can also factorize out the spin functions 
in two-electron integrals



Spin Factorization of 2-elec Integrals

We can also factorize out the spin functions 
in two-electron integrals



Spin Integration
Integrals over spin coordinates are usually 
easy to do because the spin function () is 
usually just a() or ()

The spin integration rules for a() and () 
are very easy and result in 1 or 0



Spin Integration General Results

One-electron integrals survive if both spin-orbitals 
have the same spin

Two-electron integrals survive if spins i,j match on 
the left and spins k,l match on the right



Spin Integration in Hartree-Fock

We just did the generic one- and two-
electron integrals; the ones in Hartree-Fock 
are specific types

How do these repeats affect spin 
integration?

same index both sides
each index appears twice
(although in different places)



Spin Integration in Hartree-Fock
One-electron Integrals



Spin Integration in Hartree-Fock
One-electron Integrals

Factor in brackets 
is always = 1 
(same spin function)



Spin Integration in Hartree-Fock
Coulomb Integrals



Spin Integration in Hartree-Fock
Coulomb Integrals

1 1



Spin Integration in Hartree-Fock
Coulomb Integrals

1 1

Coulomb integrals always survive spin integration!



Spin Integration in Hartree-Fock
Exchange Integrals



Spin Integration in Hartree-Fock
Exchange Integrals



Spin Integration in Hartree-Fock
Exchange Integrals

Exchange integrals sometimes survive spin integration!
Need spin orbitals i and j to have same spin



Back to our Hartree-Fock Energy 
Example

Simple example: He atom
2 electrons, 1sa, 1sβ
Renumber the spin orbitals: 1=1sa, 1=1sβ 1 1

Exchange integrals
must have same spin 
on i and j

0

Can we simplify this result?  Yes!  (normally)



Simplifying Spatial Integrals

1 1

Helium atom example

Spatial part is the same.  Therefore after spin integration, spatial integrals in 
terms of these two orbitals must be the same.  Let’s check.



Simplifying Spatial Integrals



Simplifying Spatial Integrals

Conclusion: if spin orbitals come in a, pairs with the same spatial part , then 
after spin integration we can remove the overbar labels on the spatial orbital 
integrals



Simplifying Spatial Integrals

1 1

Helium atom example



Restricted Orbitals
(Restricted Hartree-Fock, RHF)

Spin orbitals always come in (a,) pairs that 
share the same spatial orbital 

This is how we normally think about orbitals in 
chemistry

There’s no reason not to use such “restricted” 
orbitals in normal molecules in which all 
electrons are paired (“closed shell” molecules)



Unrestricted Orbitals
(Unrestricted Hartree-Fock, UHF)

When not all electrons are paired (“open-shell” 
molecules), we can sometimes get a lower 
energy solution if we “unrestrict” the orbitals: 
allow the spatial part to be different for the a
spin than for the  spin:

Introduces “spin contamination” (e.g., mix 
singlet and triplet); can sometimes cause 
severe errors in properties
Can be easier to converge



Pseudo-Classical Interpretation of 
Hartree-Fock Energies

Each electron contributes a term (i|ĥ|j) = hij

Each unique pair of electrons contributes a 
Coulomb repulsion (ii|jj) = Jij

Each unique pair of same spin electrons 
contributes an exchange term –(ij|ji) = -Kij

Always survive spin integration Nonzero only if i and j  have same spin



Hartree-Fock Energy Example: 
Li atom

1 1
3 electrons: 1=1sa, 1=1sβ, 2=2sa

2



Connection to Hund’s Rules

Why do Hund’s rules say a high-spin state is 
more stable than a low-spin state for a given 
electron configuration?
We can use Hartree-Fock theory to understand 
this
As an example, consider the p2 electron 
configuration

vs
1 2 3 1 2 3

EHF = h11 + h22 + J12 – K12 EHF = 2h11 + J11

Energy lower because 
exchange integral is 
subtracted!



Hartree-Fock Equations
Minimizing the Hartree-Fock energy with respect 
to the orbitals leads to the Hartree-Fock 
equations for the orbitals:

Problem: This is a very complicated integro-
differential equation!



Roothan to the Rescue!
If we introduce a basis set, we 
convert the equation into a 
much simpler linear algebra 
problem

Clemens C. J. Roothan

Images from Wikipedia



Summary of Hartree-Fock-Roothan 
Equations

Pseudo-eigenvalue equation

C collects the expansion coefficients for each 
orbital expressed as a linear combination of 
the basis functions (each column of C is a 
molecular orbital)

Note: C depends on F, which depends on… C!



Self-consistent-field procedure

1. Specify molecule, basis functions, and electronic 
state of interest (i.e., singlet, triplet, etc)

2. Form overlap matrix S

3. Guess initial MO coefficients C

4. Form Fock matrix F

5. Solve FC=SCε

6. Use new MO coefficients C to build new Fock 
matrix F

7. Go to step 5; repeat until C no longer changes 
from one iteration to the next



Forming the Fock Matrix

For closed-shell RHF



Computational Cost

Rate determining step normally computation of 
O(n4) integrals
Integrals very small if basis functions centered 
on atoms far from each other; can use 
screening techniques to reduce to O(n2) 
significant integrals
Fast multipole methods, etc., can reduce cost 
further to “linear scaling”
Alternatively, can replace 4-index integrals by 
3-index integrals using “density fitting”



So What Did We Get?

The electronic energy (one point on the 
potential energy surface; PES can give 
equilibrium geometry, reaction paths, 
etc.)

The electronic wave function (can get 
dipole moment, polarizability, 
electrostatic potential, other properties)

Orbitals (can give insight into bonding)

Orbital energies



Orbital Energies

Occupied orbital energy (usually 
negative) approximately gives negative 
of energy required to remove an 
electron from that orbital

Unoccupied orbital energy (usually 
positive) very approximately gives 
energy required to put an electron in 
that orbital

Orbital energies do not sum to the 
Hartree-Fock energy



Energy Units
Atomic unit of energy is the Hartree
(sometimes abbreviated au or Eh)
H atom energy in the Born-Oppenheimer 
approximation (use electron mass not 
reduced mass) defined as -1/2 Hartree
It’s a big unit!  1 Hartree = 627.509 kcal/mol



Example of Orbital Energies

Comparison of Hartree-Fock to 
Experiment for Cu+ (atomic units = 
Hartree)

Data from McQuarrie, Quantum Chemistry



Practical considerations
Hartree-Fock self-consistent-field (HF SCF) usually converges 
fairly well with a good initial guess
Stretched bonds, diradicals, transition metals, high-spin states, 
etc., can cause problems for convergence
In high-symmetry cases, the program can guess the wrong 
orbital occupations, and then have trouble recovering from this 
to get the desired solution
Not guaranteed to land on a local minimum in C space; can 
check by running a Hartree-Fock stability analysis (useful but 
not commonly done).  However, even this doesn’t guarantee 
you’re not in some other local minimum (esp. for high-symmetry 
cases)
User is responsible for making sure the orbital occupations are 
reasonable and the spin state is correct.  Many students don’t 
know that the ground state of O2 is a triplet, not a singlet.  The 
programs don’t know about this!



Improving Convergence

Most codes use “direct inversion of the 
iterative subspace” (DIIS) to improve 
convergence (improves guess for the next 
step) 
The quality of the guess density makes a 
big difference.  Core Hamiltonian (no initial 
density) is quite poor.  Hückel and GWH 
ok; superposition of atomic densities 
(SAD) seems best when available 
Using MO's from one geometry as guesses 
for a nearby geometry (or neutral orbitals 
as a guess for a cation or anion, or singlet 
orbitals as a guess for a triplet) works well


