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Preceding Material

#These notes pick up from “General
Introduction to Electronic Structure
Theory" by the author.



http://vergil.chemistry.gatech.edu/notes/intro_estruc_general/Electronic-Structure-Intro-General.pdf

What Hartree-Fock is for

# A way to approximately solve the Electronic
Schrodinger equation

A

Hu(r;R)¥(r; R) = Eq(R)¥(r; R)

# This gives us the electronic wavefunction,
from which we can extract dipole moment,
polarizability, etc!

# The electronic energy E_(R) is the potential
energy surface: gives equilibrium geometries,
reaction paths, etc.



The Slater Determinant

xi(x1)  xe(xi) - xw(xa)

U — 1 X1(x2)  xa(x2) - xw(x2)
VNI : - :

X1(xn) xo(xn) - xn(xy)

John Slater

Shorthand: IXZX] ne Xk> or |Z] ¥ 8 k>

We will assume the electronic wavefunction can be written
as a single Slater Detrminant (this is an approximation). This
enforces an antisymmetric wavefunction. The Hartree-Fock
procedure will give us the orbitals.

Images from Wikipedia



Hartree-Fock Molecular Orbital Theory

# 1. Invoke the Born-
Oppenheimer approximation

# 2. Express the electronic
wavefunction as a single Slater
Determinant

# 3. Solve for those orbitals
which minimize the electronic Douglas Hartree V. A. Fock
energy (variational method)

# This winds up being
mathematically equivalent to
assuming each electron
Interacts only with the average
charge cloud of the other
electrons

Images from Wikipedia



The Operators

hii) = _lv? _ Z Za One-electron operator: for electron
2 ~ TiA its KE and its attraction to all nuclei
D (z ) . i Two-electron operator: for electrons
J) = rij jand Jj, their Coulomb repulsion

Electronic Hamiltonian in terms of these operators:

Fla = 32 h(0) + 32 00, ) + Vi

1<



The Hartree-Fock Energy

# If the variational theorem says to minimize
the energy, what is the energy of a Slater
determinant?

Eq(R) = (¥(r;iR)|Hu|¥(r;R))
= f dr¥*(r; R)H, ¥ (r; R)
# Slater’s Rules tell us how to get the matrix

elements of the electronic Hamiltonian using
Slater Determinants




The Hartree-Fock Energy

elec elec

Enp =Y (ilhli) + 3 _[ii|jj] — [ij|ji

1 1>
One-electron integral (4-dimensional):

(i|h]) = /dX1Xf(X1);l(I‘1)Xj(X1)

Two-electron integral (8-dimensional):

ij|kl] = /dxldXQX@ (Xl)Xy(Xl)riXk(XﬁXz(Xﬂ



Physical Meaning of the Terms

# Each electron contributes a one-electron
integral

(ilhli) = [ dxax; () ()i (x1)

# This looks like the expectation (average) value
of the operator h for an electron in orbital ¥, so
long as the orbital is normalized

# Recall h contains electron KE and potential of
attraction to all the nuclei

# Sum over all orbitals / to get total electron KE
and attraction to nuclei




Physical Meaning of the Terms

# Each pair of electrons (in orbitals 7and j) has
a "Coulomb integral”:

ilji] =| [ dxr [ ol el (e ()

12

orbital / is located at x; / orbital jis located at x,

/ Probability electron 1 in / Probability electron 2 in

Integrate over all possible

locations for the electrons Coulomb repulsion between electron at

X, and electron at x,

Overall this integral represents the Coulomb
repulsion between electron 1 in orbital /and
electron 2 in orbital j



Physical Meaning of the Terms

# Each pair of electrons (in orbitals 7and j) has
also has an “"Exchange integral”:

7171 = X1 Xo X; (X1 Xli;XQ X9
ijljil = [ dxa [ dxa X g )

# This is like the Coulomb integral

ilig) = [ s [ o ) aox0) - (e o)

Except two of the orbital indices have been
“exchanged”!

No direct physical meaning .. consequence of
Slater Determinant



Hartree-Fock Energy Example

elec A elec
Epp =) (ilhli) + > _liljj] — [ij]57]
) 1>
“Simple example: He atom %
%2 electrons, 1sa, 1sB

“*Number the spin orbitals 1=1sa, 2=1sf8 @@
Epp = (1|h|1) 4+ (2|h]2) + [22]11] — [21|12]

# We (typically) need a computer to evaluate these
integrals

# Is this as simple as we can get it?
# No! The last integral is zero. Why?



Spin Factorization and Spatial Orbitals

# Recall each spin orbital ¥(x) is a function of 4
coordinates: y(X,y,z,»)

€ We normally write each spatial orbital as a product of a
spatial part ¢(r) and a spin part, which we might call
o(m), i.e., x(X) = ¢(r) o(w) [recall r = {x,y,z}

# The operators in Hartree-Fock theory, h and 1/r,,, do not
depend on the spin coordinate

# That means an integral over x can be factored into a
simple integral over the spin coordinate o (no operators)
times a more complicated integral (involving operators)
over the spatial coordinates r, e.qg.,

(i) = [ dxx (b))



Spin Factorization and Spatial Orbitals

# Recall each spin orbital ¥(x) is a function of 4
coordinates: y(X,y,z,»)

# We normally write each spatial orbital as a product of a
spatial part ¢(r) and a spin part, which we might call
o(m), i.e., x(X) = ¢(r) o(w) [recall r = {x,y,z}

# The operators in Hartree-Fock theory, h and 1/r;,, do not
depend on the spin coordinate

# That means an integral over x can be factored into a
simple integral over the spin coordinate o (no operators)
times a more complicated integral (involving operators)
over the spatial coordinates r, e.q.,

(hlg) = [ doxi (x)h(r)x; (%)

= fdrdwgbj(r)af(wﬁl(r)@j(I')Uj (w)



Spin Factorization and Spatial Orbitals

# Recall each spin orbital ¥(x) is a function of 4
coordinates: y(X,y,z,»)

# We normally write each spatial orbital as a product of a
spatial part ¢(r) and a spin part, which we might call
o(m), i.e., x(X) = ¢(r) o(w) [recall r = {x,y,z}

# The operators in Hartree-Fock theory, h and 1/r;,, do not
depend on the spin coordinate

# That means an integral over x can be factored into a
simple integral over the spin coordinate o (no operators)
times a more complicated integral (involving operators)
over the spatial coordinates r, e.q.,

(i) = [ dy ()R ()
= fdrdwgbj(r)af(wﬁl(r)@j(I')Uj (W)
= [ dwor(@)as(w) [ droj(x)h(r)o;(r)



Spin Factorization and Spatial Orbitals

# Recall each spin orbital ¥(x) is a function of 4
coordinates: y(X,y,z,»)

# We normally write each spatial orbital as a product of a
spatial part ¢(r) and a spin part, which we might call

o(m), i.e., x(X) = ¢(r) o(w) [recall r = {x,y,z}
# The operators in Hartree-Fock theory, h and 1/r;,, do not
depend on the spin coordinate

# That means an integral over x can be factored into a
simple integral over the spin coordinate o (no operators)
times a more complicated integral (involving operators)
over the spatial coordinates r, e.q.,

(ilhlj) = | dx )y ()
_ f drdwo? (v)or(w)h(r)d;(r)o; (w)
= [ ool (@)o(w) [ dro;(x)h(x)s(x)
- [ [ dwot(@)ai(w)| x (ilhl))




Spin Factorization of 2-elec Integrals

# We can also factorize out the spin functions

in two-electron integrals

ikl = [ dxr [ dx G () ni e va(x)

12



Spin Factorization of 2-elec Integrals

# We can also factorize out the spin functions
in two-electron integrals

[mm::ﬂm/ﬁﬂﬂﬁbm—WWMM@

- /dm/dwl/drgjdwg

¢; (r1)o; (wl)cbg(rl)%(wl)m¢k(r2)0k(w2)sz(r2)01(w2)
— / deor o (1) (wn) / s (w2) 0y (wy) X
[ der [ dradi(e1)sr0) - i ez )

[] dUJ1O;((w1)O-j(UJ1)] [] dwsos(we)o(wa) | x (ij|kl)



Spin Integration

# Integrals over spin coordinates are usually
easy to do because the spin function o(w) is
usually just a(w) or B(w)

# The spin integration rules for a(w) and B(w)
are very easy and resultin 1 or 0

= 1

|
 —

]
i



Spin Integration General Results

(iIhlj) = / dwo () (w)| x (ilhl)
’h’J) 0; = 0j
| 0 0, # 0

# One-electron integrals survive if both spin-orbitals
have the same spin

k) = | [ doroi ()o@ | [ denoilenon(in) | x (k)

[ (ij|kl) o0; =0, and oy, = o

0 0; # 0, O O), # 0]

# Two-e ectron integrals survive if spins /7 match on
the left and spins &,/ match on the right

A

= X




Spin Integration in Hartree-Fock

# We just did the generic one- and two-
electron integrals; the ones in Hartree-Fock
are specific types

elec elec
Enr =) (ilhlg) + > _[iiljj] — [ijlji]

AN

same index both sides : :
each index appears twice
(although in different places)

# How do these repeats affect spin
integration?



Spin Integration in Hartree-Fock
One-electron Integrals

(lhli) = [ dxx(x



Spin Integration in Hartree-Fock
One-electron Integrals

(i|hli) / dxx; (x
— /dw(f@- w)o;(w /drgbj(r)ﬁ(r)gb@-(r)

Factor in brackets ‘ . A
salways=1 = dwa oo, (w)| x (i|h|i)
(same spin function)

\
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Spin Integration in Hartree-Fock
Coulomb Integrals

iljj] =[x [ xi () (e (x)

192



Spin Integration in Hartree-Fock
Coulomb Integrals

i) =[x [ dxe ;G- )

- 1 - 1
= dwla%‘ O, wl)/dwga"i‘ 0 ; wg) X

/‘drl / dl‘2€f5f(1‘1)¢i(rl)i@bj(r?)@(rﬂ

12



Spin Integration in Hartree-Fock

Coulomb Integrals

iiljj] = [ i [ dxa X Ga)xa(x) =X (x2)x; (x2)

1

/‘dl’l / dI‘QQf(1’1)@@(1'1)—@;(1’2)@3'@2)

12

= (ulj])

Coulomb integrals a/ways survive spin integration!



Spin Integration in Hartree-Fock
Exchange Integrals

il =[x [ e 6a)— ))



Spin Integration in Hartree-Fock
Exchange Integrals

. 1
il = [ dxi [ d x (e (a) g (v ()

= /dwla- (w1)oj(wr) /dwga-(u}g)ai(wg) X
/dl‘l/dl‘%b ri)o;(ry)— : 0 (r2)0;(r2)

12



Spin Integration in Hartree-Fock
Exchange Integrals

il = [ [ i 6a) i)

= ‘/‘dwlO';(((JJ1)O'j(w1)/‘dWQO-;'((wQ)O-i(MQ) X
/‘ dr; / drgqﬁz‘(m)qﬁj(m)%@(1‘2)@(1‘2)

= [ dwr} (@n)as(wn) [ dwser) (wa)ai(w) x (ijli)

Exchange integrals sormetimes survive spin integration!
Need spin orbitals / and j to have same spin



Back to our Hartree-Fock Energy

Example
elec elec
Epp =Y (ilhli) + ) _ldiljj] — [ij]5i
1 1>
“»Simpl le: H
52 electrons, 159, 158 ¥

<*Renumber the spin orbitals: 1=1sc0, 1=1sp @@

Eur = (1h]1) + (T)h[T) + [TT]11] — 1]

Exchange integrals
must have same spin

Epp = (11h|1) + (T|A|T) + (IT|11) on/ and;

Can we simplify this result? Yes! (normally)



Simplifying Spatial Integrals

Helium atom example ? |

Eyp = (11a]1) + dAT) + TI11] @

=

Ja(w)

X1(X) = Xisa(X) =|01s(r)a(w) = o1
) (w)

X1(x) = X1ss(%) = |01s(r)F(w) = 01 (

=

Spatial part is the same. Therefore after spin integration, spatial integrals in
terms of these two orbitals must be the same. Let’s check.



Simplifying Spatial Integrals

X1(X) = Xisa(x) =|01s(r)r(w) = o1 (r)a(w)
X1(x) = Xlss(X)ZCbls( )ﬁ(w)Ecbl( )P (w)

(1R[1) = /dxxl x

ART) = /dxxl



Simplifying Spatial Integrals
X)) = Yia(x) =frw) Foi W)
1) = i) = |0 )W) =0 E)w)
T =[x [ dxa i) () —vi (v ()

12

_ /‘dwlﬁ*(wl)ﬁ(wl)/.deQ*(MQ)a(MQ) a

[ der [ drasitronte) i) ra)
= (1111)

Conclusion: if spin orbitals come in o, pairs with the same spatial part ¢, then
after spin integration we can remove the overbar labels on the spatial orbital
integrals



Simplifying Spatial Integrals

Helium atom example ? |

Eyr = (1a1) + A1) + [TI11] o

>
B
I

X 1sa (X) =15 (r)&(w)

X1sp3 (X)

XT(X)

Epp = 2(1|h|1) + (11]11)



Restricted Orbitals
(Restricted Hartree-Fock,

RHF)

# Spin orbitals always come in (a,) pairs that

share the same spatial orbital ¢

Xn(x) = on(r)o(w)

xm(x) = on(r)3(w)

# This is how we normally think about orbitals in

chemistry

# There’s no reason not to use suc
orbitals in normal molecules in w
electrons are paired (“closed she

N “restricted”
nich all

I” molecules)



Unrestricted Orbitals
(Unrestricted Hartree-Fock, UHF)

# When not all electrons are paired (“open-shell”
molecules? we can sometlmes get a lower
energy solution if we “unrestrict” the orbitals:
allow the spatial part to be different for the o
spin than for the B spin: A

Yn(X) = 6n(r)a(w) 1
\=(X) = én(r)Bw) -+

# Introduces “spin contamination” (e.g., mix

singlet and triplet); can sometimes cause
severe errors In properties

# Can be easier to converge




Pseudo-Classical Interpretation of
Hartree-Fock Energies

elec elec

Enp = (ilhli) + Y [idlj5) — [ij]ji

[/

Always survive spin integration  Nonzero only if /and j have same spin

# Each electron contributes a term (ilhlj) = h;

# Each unique pair of electrons contributes a
Coulomb repulsion (iiljj) = J;

# Each unique pair of same spin electrons

contributes an exchange term —(ij|ji) = -K;



Hartree-Fock Energy Example:

Li atom o}

3 electrons: 1=1sa, 1=1sB, 2=2sa @_A_l_@)

EUHF — hll I hll I h22 _I_ JTI _I_ JQl _’_ JQT — K12
Erur = 2hq11 + hoo + J11 + 2J57 — K9



Connection to Hund’s Rules

# Why do Hund’s rules say a high-spin state is
more stable than a low-spin state for a given
electron configuration?

® Vr\]/e can use Hartree-Fock theory to understand
this
# As an example, consider the p? electron
configuration
A A A

VS
1 2 3 1lv 2 3

Ejp = hyy + hyy + J12@ Eqr = 2hyy +

Energy lower because
exchange integral is
subtracted!




Hartree-Fock Equations

# Minimizing the Hartree-Fock energy with respect
to the orbitals leads to the Hartree-Fock
equations for the orbitals:

xuta) + 32| f dabea) | e

- Z /dX2X;, (x2) X (X2)7"12] ZEJXJ X1)

J71

fxi) = h(xa) + 3 Ji(x1) = K;(xp)

f(x1)xi(x1) = €ixi(x1)

# Problem: This is a very complicated integro-
differential equation!



Roothan to the Rescue!

# If we introduce a basis set, we
convert the equation into a
much simpler linear algebra
problem

f(x1)xi(x1) = exi(x1)

K
Xi = > CuiX,.
p=1

Clemens C. J. Roothan

Sw = [ i) (x)
z FMVOI/?: — € Z S;wcm' F,uy — /dxl)z:l(xl)f(xl))zy(xl)

Images from Wikipedia



Summary of Hartree-Fock-Roothan
Equations

S = [ dxi¥x) ),

Fu = [ daxia)f(a)(x)

FC = SCe

# Pseudo-eigenvalue equation

# C collects the expansion coefficients for each
orbital expressed as a linear combination of
the basis functions (each column of Cis a
molecular orbital)

# Note: C depends on F, which depends on... C!



Self-consistent-field procedure

# 1. Specify molecule, basis functions, and electronic
state of interest (i.e., singlet, triplet, etc)

# 2. Form overlap matrix S

# 3. Guess initial MO coefficients C
# 4, Form Fock matrix F

# 5, Solve FC=SCe

# 6. Use new MO coefficients C to build new Fock
matrix F

# 7. Go to step 5; repeat until C no longer changes
from one iteration to the next



Forming the Fock Matrix
f(r) = h(r) + 3 2Ji(r) = Ki(r)

N/2
f/JJ/ — h‘u,y + Z Z(ﬂy‘zf&) — (/UJZ|’LV)

*  For closed-shell RHF
K ~
— Z Cli®p
7

N/2 K
f,w/ — w/ T Z Z O)\z g LLVI)\O] [/~L0-|)\V])

1 Ao

K 1
= hw+Y_ Do ([WMG] - §[WP\V]) ,
Ao



Computational Cost

fuo = P+ 3 Do (Jrlro] = Gluolav])

# Rate determmmg step normally computation of
O(n%) integrals

# Integrals very small if basis functions centered
on atoms far from each other; can use

screening techniques to reduce to O(n?)
significant integrals

# Fast multipole methods, etc., can reduce cost
further to “linear scallng

# Alternatively, can replace 4-index mtegrals by
3-index integrals using “density fitting”



So What Did We Get?

#The electronic energy (one point on the
potential energy surface; PES can give
equilibrium geometry, reaction paths,
etc.)

#The electronic wave function (can get
dipole moment, polarizability,
electrostatic potential, other properties)

#Orbitals (can give insight into bonding)
#QOrbital energies



Orbital Energies

#QOccupied orbital energy (usually
negative) approximately gives negative
of energy required to remove an
electron from that orbital

#Unoccupied orbital energy (usually
positive) very approximately gives
energy required to put an electron in
that orbital

# QOrbital energies do not sum to the
Hartree-Fock energy



Energy Units

# Atomic unit of energy is the Hartree
(sometimes abbreviated au or E;)

# H atom energy in the Born-Oppenheimer
approximation (use electron mass not
reduced mass) defined as -1/2 Hartree

# It's a big unit! 1 Hartree = 627.509 kcal/mol



Example of Orbital Energies

Comparison of Hartree-Fock to
Experiment for Cut (atomic units =
Hartree)

Orbital Hartree-Fock Experiment

Is 058.4 061.4
2S 82.3 &1.0
2D 71.8 68.9

Data from McQuarrie, Quantum Chemistry



Practical considerations

# Hartree-Fock self-consistent-field (HF SCF) usually converges
fairly well with a good initial guess

# Stretched bonds, diradicals, transition metals, high-spin states,
etc., can cause problems for convergence

# In high-symmetry cases, the program can guess the wrong
orbital occupations, and then have trouble recovering from this
to get the desired solution

# Not guaranteed to land on a local minimum in C space; can
check by running a Hartree-Fock stability analysis (useful but
not commonly done). However, even this doesn’t guarantee
you’re) not in some other local minimum (esp. for high-symmetry
cases

# User is responsible for making sure the orbital occupations are
reasonable and the spin state is correct. Many students don't
know that the ground state of O, is a triplet, not a singlet. The
programs don’t know about this!



Improving Convergence

# Most codes use “direct inversion of the
iterative subspace” (DIIS) to improve
conv)ergence (improves guess for the next
step

#The quality of the guess density makes a
big difference. Core Hamiltonian (no initial
density) is quite poor. Huckel and GWH
ok; superposition of atomic densities
(SAD) seems best when available

# Using MO's from one geometry as guesses
for a nearby geometry (or neutral orbitals
as a guess for a cation or anion, or singlet
orbitals as a guess for a triplet) works well



