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1 Introduction

The configuration interaction expansion of an approximate solution to the electronic Schrödinger
equation is typically written

|Ψ〉 = c0|Φ0〉 +
∑

ia

cai |Φa
i 〉 +

∑

i<j,a<b

cabij |Φab
ij 〉 +

∑

i<j<k,a<b<c

cabcijk |Φabc
ijk〉 + . . . (1)

|Φ0〉 is the so-called “reference,” typically obtained from a Hartree-Fock self-consistent-field (SCF)
procedure as the best single Slater determinant (or configuration state function, CSF) which
describes the electronic state of interest. |Φa

i 〉 is the determinant formed by replacing spin-orbital
i in |Φ0〉 with spin orbital a, etc. These notes follow the convention that i, j, k denote orbitals
occupied in the reference, a, b, c denote orbitals unoccupied in the reference, and p, q, r are general
indices. The widely-employed CI singles and doubles (CISD) wavefunction includes only those
N -electron basis functions which represent single or double substitutions relative to the reference
state and typically accounts for about 95% of the correlation energy for small molecules near their
equilibrium geometries.

Head-Gordon, Pople, and others have advocated the use of configuration interaction with
only single substitutions (CIS) as the starting point for investigations of excited electronic states.
In their 1992 paper, Foresman, Head-Gordon, Pople, and Frisch [1] list the following desirable
properties of CIS: well defined (and differentiable), applicable to large systems, size-consistent,
variational, and providing directly comparable (i.e. orthogonal) electronic state solutions. They go
on to present equations for the CIS energy and gradient when the reference is a single determinant
obtained from an SCF procedure. These notes present a derivation of the CIS energy for general
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and several specific types of single-determinant references. Later, we discuss some extensions
which are necessary for reliable treatments of open-shell systems.

2 CIS Energy Equations

Since there are only two types of determinants according to excitation level (i.e., the reference and
single excitations), there are only two relevant types of matrix elements, 〈Φ0|Ĥ|Φa

i 〉 and 〈Φa
i |Ĥ|Φb

j〉.
Assuming that the determinants are made up of a common set of orthonormal spin orbitals, these
matrix elements may be evaluated using Slater’s rules. The first is given by

〈Φ0|Ĥ|Φa
i 〉 = hia +

∑

k∈Φ0

〈ik||ak〉 = Fia, (2)

where the Fock matrix element Fpq is defined as

Fpq = hpq +
∑

k∈Φ0

〈pk||qk〉. (3)

The other relevant matrix elements are of the form 〈Φa
i |Ĥ|Φb

j〉. The singly excited determinants
may differ from each other by two spin orbitals if i 6= j and a 6= b. If so, the determinants are
already in maximum coincidence and the matrix element is of the form

〈· · · a · · · j · · · |Ĥ| · · · i · · · b · · ·〉 (4)

or
〈· · · j · · · a · · · |Ĥ| · · · b · · · i · · ·〉 (5)

The matrix elements are 〈aj||ib〉 and 〈ja||bi〉, respectively, and these antisymmetrized integrals
are equal to each other (and also to −〈ja||ib〉 and −〈aj||bi〉).

For the case i = j, a 6= b, the matrix elements are

〈Φa
i |Ĥ|Φb

i〉 = 〈· · · a · · · |Ĥ| · · · b · · ·〉 = hab +
∑

k∈Φ0,k 6=i

〈ak||bk〉 = Fab − 〈ai||bi〉. (6)

Likewise, for the case i 6= j, a = b, the matrix elements are

〈Φa
i |Ĥ|Φa

j 〉 = 〈· · · i · · · a · · · |Ĥ| · · · a · · · j · · ·〉 = −hij −
∑

k∈{Φ0+a}

〈ik||jk〉 = −Fij − 〈ia||ja〉. (7)

Finally, when i = j and a = b,

〈Φa
i |Ĥ|Φa

i 〉 =
∑

k∈Φ0

hkk +
1

2

∑

k,l∈Φ0

〈kl||kl〉 − hii + haa −
∑

k∈Φ0

〈ki||ki〉 +
∑

k∈Φ0

〈ka||ka〉 − 〈ia||ia〉(8)

= E0 − Fii + Faa − 〈ia||ia〉,
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where E0 = 〈Φ0|Ĥ|Φ0〉; if |Φ0〉 is obtained by an SCF procedure, then this is the SCF energy.

Using the permutational symmetries of the antisymmetrized two-electron integrals, the two-
electron terms for the preceding four cases can be combined (rearranging the integral 〈ia||ja〉
requires the assumption that the orbitals are real). This yields the final, compact result

〈Φa
i |Ĥ|Φb

j〉 = E0δijδab + Fabδij − Fijδab + 〈aj||ib〉. (9)

This is equation (11) of Maurice and Head-Gordon [2], who extended the CIS method to the
case of restricted open-shell (ROHF) and unrestricted (UHF) reference determinants. Note that
E0 occurs along the diagonal of the entire matrix H; this means that we can subtract E0 before
diagonalizing and add it back later to each of the eigenvalues. If all matrix elements Fia = 0, as
they often are, then the reference determinant does not mix with any of the excited determinants
and |Φ0〉 is already an eigenfunction of the CIS Hamiltonian with eigenvalue E0; furthermore, the
eigenvalues of the CIS Hamiltonian less the E0 diagonal terms represent excitation energies. From
this point onward, E0 will be subtracted from the Hamiltonian.

Given the above matrix elements, it remains to write down the CIS energy expression. Recall
that the CIS wavefunction is expanded as

|Ψ〉 = c0|Φ0〉 +
∑

ia

cai |Φa
i 〉. (10)

Assuming real CI coefficients, the energy is given by

ECIS = E0 + 2
∑

ia

c0c
a
iFia +

∑

iab

cai c
b
iFab −

∑

ija

cai c
a
jFij +

∑

ijab

cai c
b
j〈aj||ib〉. (11)

For a closed-shell SCF reference |Φ0〉, off-diagonal terms of the Fock matrix vanish, and the
expression becomes

ECIS = ESCF +
∑

ia

(cai )
2(εi − εj) +

∑

ijab

cai c
b
j〈aj||ib〉, (12)

which matches equation (2.15) of Foresman et al. [1] once the two-electron integral is rearranged.
Of course, this equation is only useful once the CI coefficients are known. In general, the lowest
several eigenvectors are of interest in a CIS study; these can be obtained by iteratively diagonalizing
the CIS Hamiltonian using Davidson’s method [3] or the Davidson-Liu Simultaneous Expansion
Method [4]. Iterative solution calls for diagonalization of the Hamiltonian in a small subspace
of trial vectors, with the set of vectors being expanded every iteration until convergence. This
requires calculation of the following quantities, usually called the σ vectors:

σI =
∑

J

HIJcJ . (13)
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One σ vector must be computed for each c in the set of trial vectors. For CIS, σ can be written

σ0 =
∑

jb

〈Φ0|H|Φb
j〉cbj (14)

σai = 〈Φia|H|Φ0〉c0 +
∑

jb

〈Φa
i |H|Φb

j〉cbj, (15)

where the bar over H is a reminder that E0 has been subtracted from the Hamiltonian. These
expressions can be expanded to

σ0 =
∑

jb

cbjFjb (16)

σia = c0Fia +
∑

jb

cbj [Fabδij − Fijδab + 〈aj||ib〉] . (17)

The above equations make it clear that σ can be computed directly from the one- and two-electron
integrals without the need to explicitly compute or store the one- and two-electron coupling
coefficients γIJpq and ΓIJpqrs as separate quantities; this makes the CIS method a direct CI procedure.
As noted by Foresman et al. [1], the CIS iterations can actually be performed in a “double-direct”
fashion; i.e., the integrals can also be computed on-the-fly as needed. As shown by Maurice and
Head-Gordon [2], the contribution of the two-electron integrals to σai can be written as a Fock-like
matrix,

F̃ia =
∑

jb

cbj〈aj||ib〉 (18)

=
∑

µν

C∗µaCνi

∑

λσ

〈µλ||νσ〉
∑

jb

C∗λjc
b
jCσb, (19)

where Cµi are the coefficients defining the transformation from atomic orbitals (AOs) to molec-
ular orbitals (MOs). Evaluation of F̃ia can be carried out as a series of matrix multiplies. The
pseudodensity matrix,

P̃λσ =
∑

jb

C∗λjc
b
jCσb, (20)

can be multiplied by the two-electron integrals as they are formed in the atomic orbital basis to
yield the AO Fock-like matrix,

F̃µν =
∑

λσ

〈µλ||νσ〉P̃λσ, (21)

which is transformed back into the MO basis by

F̃ia =
∑

µν

C∗µaF̃µνCνi. (22)
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2.1 Restricted Hartree-Fock References

Now consider the case of a closed-shell RHF reference determinant. In this case, Fpq = δpqεp, so
that σ0 becomes zero. σia simplifies to

σia = cai (εa − εi) +
∑

jb

cbj〈aj||ib〉. (23)

Conserving Ms requires that the spins of j and b are equal. Therefore,

σia = cai (εa − εi) +
∑

jb

cbj〈aj||ib〉 +
∑

jb

cb
j
〈aj||ib〉. (24)

After integrating over spin, this becomes in chemists’ notation

σia = cai (εa − εi) +
∑

jb

cbj[(ai|jb) − (ab|ji)] +
∑

jb

cb
j
(ai|jb). (25)

Time-reversal symmetry imposes certain conditions on the CI coefficients. In alpha and beta
string notation [5], for Ms = 0 cases,

c(Iα, Iβ) = (−1)Sc(Iβ, Iα). (26)

An analogous equation also holds for σ. This means that for a closed shell RHF reference, cai = ca
i

(σai = σa
i
) for singlets, and cai = −ca

i
(σai = −σa

i
) for triplets; thus only half of the CI coefficients

must be computed explicitly. These sign rules are also evident from the observation that |Φa
i 〉 and

|Φa
i
〉 are not spin eigenfunctions, but that the total CI wavefunction will be a spin eigenfunction

(if the required determinants are present in the CI space). Using the determinant sign convention
of Szabo and Ostlund [6], spin eigenfunctions (or CSFs) associated with the above determinants
are

|1Φa
i 〉 =

1√
2

(

|Φa
i 〉 + |Φa

i
〉
)

(27)

|3Φa
i 〉 =

1√
2

(

|Φa
i 〉 − |Φa

i
〉
)

. (28)

Using these relationships between CI coefficients, we obtain

1σai (RCIS) = cai (εa − εi) +
∑

jb

cbj [2(ai|jb) − (ab|ji)] (29)

3σai (RCIS) = cai (εa − εi) −
∑

jb

cbj(ab|ji). (30)

Furthermore, 1σa
i
(RCIS) =1 σai (RCIS) and

3σa
i
(RCIS) = −3σai (RCIS).
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Consider how equations (20)-(22) change when spin is explicitly accounted for. There will be
two pseudodensity matrices,

P̃ α
λσ =

∑

jb

C∗λjc
b
jCσb (31)

P̃
β
λσ =

∑

jb

C∗λjc
b
j
Cσb. (32)

Due to equation (26), P̃ α
λσ = P̃

β
λσ for singlets, and P̃ α

λσ = −P̃
β
λσ for triplets. Thus it is necessary to

form only one of the Fock-like matrices, F̃ α
µν or F̃ β

µν . The former is constructed as

1F̃ α
µν =

∑

λσ

[2(µν|λσ) − (µσ|λν)] P̃ α
λσ (33)

3F̃ α
µν = −

∑

λσ

(µσ|λν)P̃ α
λσ (34)

Finally F̃ α
ia is constructed according to eq (22). In terms of these quantities, the σ vector can be

written

1σai (RCIS) =
1 σa

i
(RCIS) = cai (εa − εi) +

1F̃ α
ia (35)

3σai (RCIS) = −3σa
i
(RCIS) = cai (εa − εi) +

3F̃ α
ia, (36)

2.2 Unrestricted Hartree-Fock References

Now consider the case when |Φ0〉 is obtained by the UHF procedure. Once again, the Fock matrix
is diagonal: Fpq = δpqεp. However, it is customary to split the Fock matrix into two matrices, one
for α and one for β spin orbitals (mixed terms such as Fpq and Fpq are zero). As for the RHF
case, σ0 = 0 and σai can be written

σai = cai (εa − εi) +
∑

jb

cbj〈aj||ib〉 +
∑

jb

cb
j
〈aj||ib〉. (37)

Unfortunately, for a UHF reference equations (26)-(28) no longer hold, so that the above equation
can be simplified only to

σai = cai (εa − εi) +
∑

jb

cbj [(ai|jb) − (ab|ji)] +
∑

jb

cb
j
(ai|jb). (38)

Even though spin has been integrated out, the overbars must be kept in the above equation because
the spatial parts of spin orbitals i and i are not necessarily equal. An analogous equation holds
for σa

i
,

σa
i
= ca

i
(εa − εi) +

∑

jb

cb
j
[(ai|jb) − (ab|ji)] +

∑

jb

cbj(ai|jb), (39)
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and there is no general relationship between σai and σa
i
. The pseudodensity matrices P̃ α

λσ and P̃
β
λσ

are defined as in eq. (31) and (32), but they are no longer simply related. Thus it is necessary to
compute two Fock-like matrices, according to

F̃ α
µν =

∑

λσ

[(µν|λσ) − (µσ|λν)] P̃ α
λσ + (µν|λσ)P̃ β

λσ (40)

F̃ β
µν =

∑

λσ

[(µν|λσ) − (µσ|λν)] P̃ β
λσ + (µν|λσ)P̃ α

λσ. (41)

In contrast to RCIS, there are no longer separate singlet and triplet cases, since the UCIS eigen-
functions are not CSFs. After transforming to the MO basis by

F̃ α
ia =

∑

µν

C∗µaF̃
α
µνCνi (42)

F̃
β

ia
=

∑

µν

C∗µaF̃
β
µνCνi, (43)

the expressions for σ become

σai (UCIS) = cai (εa − εi) + F̃ α
ia (44)

σa
i
(UCIS) = ca

i
(εa − εi) + F̃

β

ia
. (45)

2.3 Restricted Open-Shell Hartree-Fock References

A single-determinant restricted open-shell Hartree-Fock (ROHF) wavefunction describing a high-
spin open-shell system will be an eigenfunction of Ŝ2 (i.e., a CSF). This is easy to verify by direct
application of the Ŝ2 operator, which is

Ŝ2 = Ŝ · Ŝ =
N
∑

i

N
∑

j

ŝ(i) · ŝ(j)

= Ŝ−Ŝ+ + Ŝz + Ŝ2z , (46)

where

Ŝz =
N
∑

i

ŝz(i) (47)

Ŝ2z =
N
∑

i

ŝ2z(i) (48)

Ŝ± =
N
∑

i

ŝ±(i) (49)
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and

ŝz(i)a
†
i |〉 = 1

2
a
†
i |〉 ŝ+(i)a

†
i |〉 = 0 ŝ−(i)a

†
i |〉 = a

†

i
|〉

ŝz(i)a
†

i
|〉 = −1

2
a
†

i
|〉 ŝ−(i)a

†

i
|〉 = 0 ŝ+(i)a

†

i
|〉 = a

†
i |〉.

(50)

The high-spin ROHF wavefunction can be written as

|ΦROHF 〉 =
docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉, (51)

where t and u will denote open-shells. Applying Ŝ2, this becomes

Ŝ2|ΦROHF 〉 =
[

Ŝ−Ŝ+ + Ŝz + Ŝ2z

]

docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉. (52)

This is easy to evaluate:

Ŝz

docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉 =

[

1

2
(Nα − Nβ)

] docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉 (53)

Ŝ2z

docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉 =

[

1

2
(Nα − Nβ)

]2 docc
∏

i

a
†
ia
†

i

socc
∏

t

a
†
t |〉. (54)

The raising operator Ŝ+ yields zero when acting on |ΦROHF 〉: raising operators applied to α

electrons always yield zero, and raising operators applied to the β electrons yield α spin orbitals
which are already occupied (so the determinant vanishes by the Pauli principle). Hence the final
result is

Ŝ2|ΦROHF 〉 =
[

1

4
(Nα − Nβ)

2 +
1

2
(Nα − Nβ)

]

|ΦROHF 〉

=
[

1

2
Ns

(

1

2
Ns + 1

)]

|ΦROHF 〉, (55)

where Ns = Nα − Nβ.

Now it is worthwhile to consider how to form CSFs for the single excitations. Determinants
which promote electrons from the singly-occupied space to the virtual space, as well as determi-
nants which promote β electrons in the doubly-occupied orbitals to the singly-occupied orbitals,
are already spin-adapted (the proof is completely analogous to that above for the ROHF reference
determinant). The only other relevant single excitations are those which move an electron from a
doubly-occupied orbital to a virtual orbital. These determinants are not spin-adapted, as we will
proceed to demonstrate. Consider the action of Ŝ2 on the determinant |Φa

i 〉:
[

Ŝ−Ŝ+ + Ŝz + Ŝ2z

]

a†aai

docc
∏

j

a
†
ja
†

j

socc
∏

t

a
†
t |〉. (56)
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The result of Ŝz + Ŝ2z is easily determined to be

[

Ŝz + Ŝ2z

]

|Φa
i 〉 =

[

Ns

2

(

Ns

2
+ 1

)]

|Φa
i 〉. (57)

Now all that remains is the raising and lowering operators. These are somewhat more involved
and require that attention be paid to the sign.

Ŝ+|Φa
i 〉 = Ŝ+a

†
aai

docc
∏

j

a
†
ja
†

j

socc
∏

t

a
†
t |〉. (58)

By arguments similar to those presented above, all raising operators yield zero except for ŝ+(i).
Using the anticommutation relations for creation and annihilation operators,

ŝ+(i)a
†
aai|Φ0〉 = ŝ+(i)

(

a
†

i
ai + aia

†

i

)

a†aai|Φ0〉
= ŝ+(i)a

†

i
aia

†
aai|Φ0〉

= a
†
iaia

†
aai|Φ0〉

= −a†aai|Φ0〉. (59)

The Ŝ− operator can now affect electrons in any of the following orbitals: a, i, and any of the
open-shell orbitals.

Ŝ−
[

−a†aai|Φ0〉
]

= −a
†
aai|Φ0〉 + a†aai|Φ0〉 +

socc
∑

t

a†aata
†

t
ai|Φ0〉

= |Φa
i 〉 − |Φa

i
〉 +

socc
∑

t

|Φat
ti

〉. (60)

Thus overall,

Ŝ2|Φa
i 〉 =

[

Ns

2

(

Ns

2
+ 1

)

+ 1
]

|Φa
i 〉 − |Φa

i
〉 +

socc
∑

t

|Φat
ti

〉. (61)

The analogous equation for |Φa
i
〉 is

Ŝ2|Φa
i
〉 =

[

Ns

2

(

Ns

2
+ 1

)

+ 1
]

|Φa
i
〉 − |Φa

i 〉 −
socc
∑

t

|Φat
ti

〉. (62)

Clearly a spin eigenfunction can be constructed as

|(Ns+1)Φa
i 〉 =

1√
2

(

|Φa
i 〉 + |Φa

i
〉
)

. (63)

Then the operation of Ŝ2 is

Ŝ2|(Ns+1)Φa
i 〉 =

[

Ns

2

(

Ns

2
+ 1

)]

|(Ns+1)Φa
i 〉. (64)
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Now that the relevant CSFs have been obtained, they can be used to define the ROHF con-
vergence criteria: the final ROHF wavefunction will not mix with any of the singly substituted
CSFs. Thus

〈ΦROHF |Ĥ|Φa
t 〉 = 0 socc → virt

〈ΦROHF |Ĥ|Φt
i
〉 = 0 docc → socc

〈ΦROHF |Ĥ|(Ns+1)Φa
i 〉 = 0 docc → virt,

(65)

which implies the following conditions on the Fock matrix elements

Fta = 0 (66)

Fit = 0 (67)

Fia = −Fia. (68)

Using these results, we can write down expressions for the σ vectors. Since determinants |Φa
i 〉

must enter with the same coefficients as |Φa
i
〉, σ0 = 0 once again. Furthermore, since the ROHF

reference cannot mix with any other singly excited configurations, the c0 contribution to σia and
σia may be safely ignored. We will therefore consider four cases: σai , σ

a
i
, σat , and σt

i
, where once

again t, u represent singly occupied orbitals.

The equation for σai is readily seen to be

σai =
∑

jb

cbj [Fabδij − Fijδab + 〈aj||ib〉] +
∑

jb

cb
j
〈aj||ib〉

+
∑

tb

cbt [−Fitδab + 〈at||ib〉] +
∑

jt

ct
j
〈aj||it〉. (69)

Separating the Fock operator terms from the two-electron integrals, and integrating out spin, this
yields

σai =
∑

jb

cbj [Fabδij − Fijδab] −
∑

tb

cbtFitδab +
∑

jb

cbj [2(ai|jb) − (ab|ji)]

+
∑

tb

cbt [2(ai|tb) − (ab|ti)] +
∑

jt

ct
j
(ai|jt), (70)

where we have used the relation cbj = cb
j
. The analogous equation for β spins is

σa
i

=
∑

jb

cb
j

[

Fabδij − Fijδab

]

+
∑

jt

ct
j
Fatδij +

∑

jb

cb
j
[2(ai|jb) − (ab|ji)]

+
∑

tb

cbt(ai|tb) +
∑

jt

ct
j
[2(ai|jt) − (at|ji)] , (71)
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If the equality cbj = cb
j
is to be maintained, we must have σai = σa

i
. It is then computationally

convenient to form these quantities as

σai = σa
i
=

1

2
(σai + σa

i
). (72)

Thus

2σai = 2σa
i

=
∑

b

cbi [Fab + Fab] −
∑

j

caj

[

Fij + Fij

]

−
∑

t

catFit +
∑

t

ct
i
Fat

+
∑

jb

cbj [2(ai|jb) − (ab|ji)] +
∑

jb

cb
j
[2(ai|jb) − (ab|ji)]

+
∑

tb

cbt [2(ai|tb) − (ab|ti)] +
∑

jt

ct
j
[2(ai|jt) − (at|ji)] . (73)

Now it is clear that the two-electron integrals can be treated all together. To begin condensing
the notation once again, let us define the following quantities:

P̃DV
λσ =

∑

jb

C∗λjc
b
jCσb (74)

P̃DV
λσ =

∑

jb

C∗
λj
cb
j
Cσb (75)

P̃ SV
λσ =

∑

tb

C∗λtc
b
tCσb (76)

P̃DS
λσ =

∑

jt

C∗
λj
ct
j
Cσt (77)

P̃+λσ =
1

2

[

P̃DV
λσ + P̃DV

λσ + P̃ SV
λσ + P̃DS

λσ

]

(78)

where P̃+λσ the same as that defined in eq. (17) of Maurice and Head-Gordon [2]. Then σai can be
evaluated as

σai = σa
i
=

1

2







∑

b

cbi [Fab + Fab] −
∑

j

caj

[

Fij + Fij

]

−
∑

t

catFit +
∑

t

ct
i
Fat







+ F̃+ia , (79)

where

F̃+ia =
∑

µν

C∗µiF̃µνCνa (80)

F̃+µν =
∑

λσ

[2(µν|λσ) − (µσ|λν)] P̃+λσ (81)
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Next consider the term σat :

σat =
∑

jb

[〈aj||tb〉 − Ftjδab] c
b
j +

∑

jb

〈aj||tb〉cb
j
+

∑

ub

[

Fabδtu − Ftuδab + 〈aj||tu〉cbu
]

+
∑

ju

〈aj||tu〉cu
j

=
∑

jb

cbj [−Ftjδab + (at|jb) − (ab|jt)] +
∑

jb

cb
j
(at|jb)

+
∑

ub

cbu [(at|ub) − (ab|ut) + Fabδtu − Ftuδab] +
∑

ju

cu
j
(at|ju)

= F̃ta −
∑

j

cajFtj +
∑

b

cbtFab −
∑

u

cauFtu (82)

It is computationally more efficient to evaluate σat at the same time as σai . The value of σat
computed in this manner must of course be corrected for the difference in the formulas for σat and
σai , but this correction scales as only O(N 2) (see Maurice and Head-Gordon [2]). The two-electron
part is thus computed by

F̃ta = F̃+ta − 1

2

∑

ub

cbu(ab|ut) +
1

2

∑

ju

cu
j
(at|ju) (83)

Similar considerations apply to σt
i
, which is

σt
i

=
∑

jb

cbj〈tj||ib〉 +
∑

jb

cb
j

[

Ftbδij + 〈tj||ib〉
]

+
∑

ub

cbu〈tu||ib〉 +
∑

ju

cu
j

[

Ftuδij − Fijδtu + 〈tj||iu〉
]

=
∑

b

cb
i
Ftb +

∑

u

cu
i
Ftu −

∑

j

ct
j
Fij +

∑

jb

cbj(ti|jb) +
∑

jb

cb
j
[(ti|jb) − (tb|ji)]

+
∑

ub

cbu(ti|ub) +
∑

ju

cu
j
[(ti|ju) − (tu|ji)]

=
∑

b

cb
i
Ftb +

∑

u

cu
i
Ftu −

∑

j

ct
j
Fij + F̃it (84)

where F̃it is actually evaluated according to

F̃it = F̃+
it
+

1

2

∑

ub

cbu(ti|ub) − 1

2

∑

ju

cu
j
(tu|ji) (85)

3 Extensions of CIS to Include Certain Double Substitu-

tions (XCIS)

The ROCIS method appears to be superior to UCIS for open-shell molecules [2]. Nevertheless,
ROCIS is not as reliable for open-shell cases as RCIS is for closed-shell cases. As explained by
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Maurice and Head-Gordon [7], a careful analysis of the failures of ROCIS indicated that certain
double substitutions which are neglected in UCIS and ROCIS can of crucial importance in open-
shell systems. The spin-adapted configurations are of the form:

|Φ̃a
i (1)〉 =

1√
6

(

|Φa
i
〉 − |Φa

i 〉
)

+
2√
6

|Φat
ti

〉. (86)

Although the third determinant is a double substitution as far as spin-orbitals are concerned, it
is only a single substitution when spatial orbital occupations are considered. Hence, it is very
reasonable to assume that this CSF may be of comparable importance to the singles included in
ROCIS. The extended CIS method (XCIS) is a spin-adapted CI method including these “extended
single” substitutions.

It is helpful to first verify that eq. (86) is indeed an eigenfunction of Ŝ2. Using previous results
for ROCIS, it is trivial to see that

Ŝ2
(

|Φa
i
〉 − |Φa

i 〉
)

=
[

Ns

2

(

Ns

2
+ 1

)

+ 2
]

(

|Φa
i
〉 − |Φa

i 〉
)

− 2
socc
∑

t

|Φat
ti

〉. (87)

It remains to be seen what is the effect of Ŝ2 acting on |Φat
ti

〉.

Ŝ2|Φat
ti

〉 = Ŝ2a†aa
†

t
aiat

docc
∏

i

a
†
ia
†

i

socc
∏

u

a†u|〉

= Ŝ−Ŝ+|Φat
ti

〉 +
[

Ns

2

(

Ns

2
+ 1

)]

|Φat
ti

〉. (88)

The factor Ŝ+ acts on unpaired β spins; thus,

Ŝ+a
†
aa
†

t
aiat|Φ0〉 = ŝ+(t)a

†
aa
†

t
aiat|Φ0〉

= −a
†
ta
†
aaiat|Φ0〉

= −a†aai|Φ0〉. (89)

The result of −Ŝ−a
†
aai|Φ0〉 has already been worked out in eq. (60). Thus overall,

Ŝ2|Φat
ti

〉 =
[

Ns

2

(

Ns

2
+ 1

)]

|Φat
ti

〉 + |Φa
i 〉 − |Φa

i
〉 +

∑

u

|Φau
ui

〉, (90)

and it is easy to see that

Ŝ2
(

|Φa
i
〉 − |Φa

i 〉 + 2|Φat
ti

〉
)

=
[

Ns

2

(

Ns

2
+ 1

)]

(

|Φa
i
〉 − |Φa

i 〉 + 2|Φat
ti

〉
)

. (91)

Hence |Φ̃a
i (1)〉 (eq. 86) is a CSF.
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