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1 Introduction

The harmonic oscillator is extremely useful in chemistry as a model for the vibrational motion
in a diatomic molecule. Polyatomic molecules can be modeled by coupled harmonic oscillators.
The atoms are viewed as point masses which are connected by bonds which act (approximately)
like springs obeying Hooke’s law. In these notes we will review the classical harmonic oscillator
problem and then discuss the quantum harmonic oscillator.

2 Classical Harmonic Oscillator

Consider two masses m1 and m2 at positions x1 and x2, connnected by a spring with spring
constant k. If the rest length of the spring is l0, then the two equations governing the motion of
the masses are

m1ẍ1 = k(x2 − x1 − l0) (1)

m2ẍ2 = −k(x2 − x1 − l0). (2)

It will be more convenient to work in terms of (x2 − x1 − l0), which is the amount by which the
spring is stretched or compressed from its natural length. Denoting this quantity simply as x, the
equations reduce to

m1ẍ1 = kx (3)

m2ẍ2 = −kx. (4)

Subtracting the second equation from the first gives

m1ẍ1 +m2ẍ2 = 0. (5)

It will be convenient to introduce the total mass and center of mass coordinates, defined as

M = m1 +m2 (6)

xcm =
m1x1 +m2x2

m1 +m2

, (7)
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so that we now have

Mẍcm = 0. (8)

This means that the center of mass is not accelerating or decelerating, but is either at rest or
moves with constant velocity; of course this simply reflects the fact that there is no external force
acting on the two masses.

Now dividing (3) by m1 and (4) by m2 and subtracting the second equation from the first, we
can obtain

ẍ1 − ẍ2 = kx
(

1

m1

+
1

m2

)

. (9)

Since x = x2 − x1 − l0, we have ẍ = ẍ2 − ẍ1. If we also introduce the reduced mass

µ =
m1m2

m1 +m2

, (10)

we obtain

ẍ = −
k

µ
x, (11)

which is a second-order differential equation describing the displacement x from the rest length l0
as a function of time. This can be solved to yield

x(t) = Acos(ωt) +Bsin(ωt), (12)

where ω is defined as

ω =

√

k

µ
(13)

and represents the frequency of oscillation (in rad s−1) of the oscillator. One could also define a
frequency ν in Hertz (s−1) through ω = 2πν.

3 Quantum Harmonic Oscillator

The quantum mechanical version of this harmonic oscillator problem may be written as

(

−
h̄2

2µ

d2

dx2
+

1

2
kx2

)

Ψ(x) = EΨ(x). (14)
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By considering the limiting behavior as x→∞ and as x→ 0, one finds that only certain energies
En yield reasonable solutions Ψ(x). The eigenvalues and associated eigenvectors are

En = h̄ω
(

n+
1

2

)

= hν
(

n+
1

2

)

, (15)

Ψn(x) =

(

µω

πh̄22n(n!)2

)1/4

exp

(

−
µωx2

2h̄

)

Hn

[

(

µω

h̄

)1/2

x

]

, (16)

where Hn are the Hermite polynomials of order n. The Hermite polynomials have a number of
useful properties such as

d

dx
Hn(x) = 2nHn−1(x) (17)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (18)
∫

∞

−∞

Hn(x)Hm(x)e−x2

dx = δnm

√
π2nn!. (19)

3.1 Units

Absorption or emission of infrared light can cause transitions between energy levels in the harmonic
oscillator. Usually, only transitions between adjacent energy levels (∆n = 1) occurs with a large
intensity. The frequency of the photon νphoton thus needs to match

hνphoton = ∆E = hν. (20)

In this particular case, the frequency of the photon νphoton must be the same as the frequency ν
of the oscillator. Often, νphoton is measured in wavenumbers (cm−1) instead of Hertz. Since the
photon obeys c = λν, the reciprocal wavelength of the photon 1/λ can be written as

1

λ
=

ν

c
=

ω

2πc
=

1

2πc

√

k

µ
. (21)

Note that units of cm−1 will result for 1/λ if, for example, c is in cm s−1, k is in J m−2, and
µ is in kg. Because of the numerical equivalence between νphoton and ν, one also frequently
reports ν in units of cm−1 using the above conversion. Unfortunately, spectroscopists frequently
denote this ν as ω, which as we have seen is defined differently above (ν and ω differ by a
factor of 2π). When ω is reported in cm−1, this is actually ν in cm−1, not the ω defined above.
One reason for this unfortunate discrepancy in notation is that spectroscopists prefer to use ν
to refer to fundamental (actually observed) frequencies, which differ from the harmonic (model)
frequencies because the potential wells in diatomic molecules are not strictly harmonic but contain
an anharmonic contribution.
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What are the units of k? The SI units would be J m−2, but these are not really natural units
for the very small energies and distances involved in a quantum oscillator. Frequently, these are
reported in mdyn Å−1. The conversion is

mdyn

Å
=

10−8N

10−10m
×

m

m
= 102 J

m2
. (22)

4


