Geometry Optimization

C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Optimization

Many problems in computational chemistry (and scientific computing in general!) are optimization problems: i.e., finding the "stationary points" where a multidimensional function has vanishing gradients.

- The energy as a function of nuclear coordinates. Minima, transition states may be of interest.
- Error functions depending on parameters (e.g., fitting molecular mechanics methods).
- Variational electronic structure methods like Hartree-Fock, MCSCF, CI. Minima are ground states, saddle points are excited states. (Usually done as matrix diagonalization).

Optimization Methods

- Dumb method: step one variable until the function is a minimum in this dimension, then go on to other variables, repeat until no change. This won't normally work for complicated functions/many variables.
- Most methods assume an analytic (i.e., directly calculated, not numerical) gradient is available.
- Some methods assume the Hessian (second derivative) or an approximation of it is also available.

Steepest Descent

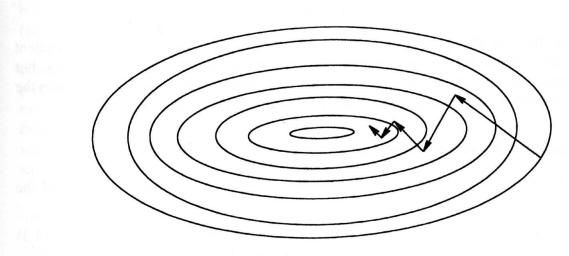


Figure 14.1 Steepest descent minimization

- Step in gradient direction, do a "line minimization" until the minimum in that direction is reached; repeat.
- Simple approach guaranteed to find minimum but may be slow; suffers from zig-zags.

Conjugate Gradient Methods

- Improvement on Steepest Descent; attempts not to spoil previous progress
- Do line minimizations in a direction which is a combination of the current gradient and the previous one

$$\mathbf{d}_i = -\mathbf{g}_i + \beta_i \mathbf{d}_{i-1}$$

The different conjugate-gradient methods provide different ways to choose β ; they involve dot products of current and previous gradients, e.g., Polak-Ribiere:

$$\beta_i^{PR} = \frac{\mathbf{g}_i^{\dagger}(\mathbf{g}_i - \mathbf{g}_{i-1})}{\mathbf{g}_{i-1}^{\dagger}\mathbf{g}_{i-1}}$$

Newton-Raphson Methods

Expand the energy function to second order around the current geometry \mathbf{x}_0 :

$$E(\mathbf{x}) \approx E(\mathbf{x}_0) + \mathbf{g}^{\dagger}(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^{\dagger}\mathbf{H}(\mathbf{x} - \mathbf{x}_0)$$

If we find the stationary point $(dE/d\mathbf{x})$ of this approximate energy expression, we obtain

$$(\mathbf{x} - \mathbf{x}_0) = -\mathbf{H}^{-1}\mathbf{g}$$

This makes intuitive sense...think about a 1D example like Harmonic Oscillator. Need larger step if (i) gradient is larger, or (ii) force constant is smaller. Exact step if quadratic PES and exact gradient, Hessian.

Newton-Raphson with Diagonal Hessian

Suppose the Hessian matrix \mathbf{H} (second derivative of electronic energy with respect to nuclear coordinates) is diagonalized to give normal modes and eigenvalues

$$\mathbf{H}u_i = \epsilon_i \mathbf{u}_i. \tag{1}$$

The Newton-Raphson step in terms of the normal modes becomes

$$(\mathbf{x} - \mathbf{x}_0) = \sum_i \frac{-F_i}{\epsilon_i} \mathbf{u}_i, \qquad (2)$$

where $F_i = \mathbf{g}^{\dagger} \mathbf{u}_i$, i.e., the component of the gradient in each normal mode direction.

Minimize/Maximize

The Newton-Raphson step

$$(\mathbf{x} - \mathbf{x}_0) = \sum_i \frac{-F_i}{\epsilon_i} \mathbf{u}_i,$$
 (3)

minimizes along directions with a positive Hessian eigenvalue ϵ_i and maximizes along directions with a negative eigenvalue. Finds minimum if all ϵ_i are positive (**H** positive definite), otherwise a saddle point if some ϵ_i are negative. *Big problems if the Hessian has the wrong "local structure."* Can sometimes solve by *level shifting* to *make* positive definite:

$$(\mathbf{x} - \mathbf{x}_0) = \sum_{i} \frac{-F_i}{\epsilon_i - \lambda} \mathbf{u}_i.$$
 (4)

Obtaining the Hessian

- Can compute analytically if the program allows it, but can be slow (can take 10 times as long as energy alone); cost scales at least as $\mathcal{O}(N^3)$
- Can approximate using tables or lower level computations
- Can improve approximate Hessian using gradient information gained during optimization: Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS), Powell.

Choice of Coordinates

- Z-matrix coordinates: old-style, inefficient
- Cartesian coordinates: even worse, un-natural, not like normal modes, more of them (3N vs 3N 6)
- Internal coordinates: simple and symmetry-adapted
- Natural internal coordinates/redundant internal coordinates (Peter Pulay): similar to symmetry-adapted internals, commonly used now

Multiple minima

- For larger molecules, more minima become possible
- Thermodynamic properties arise from Boltzmann distribution of all energetically accessible minima
- Can be hard to locate all relevant minima; search depends on initial guess geometries (and Hessians)
- Methods to help find additional minima: genetic algorithms, molecular dynamics, Monte Carlo methods, simulated annealing

Constrained Optimization

- Sometimes it's useful to fix a geometrical parameter and perform the optimization subject to this constraint
- Can rewrite function to be minimized as a Lagrange function which is the original function minus a Lagrange multiplier times a constraint function g = 0

$$L(x_1, x_2, \cdots, x_N, \lambda) = f(x_1, x_2, \cdots, x_N) - \lambda g(x_1, x_2, \cdots, x_N)$$

• Constrained optimization not always well supported by the quantum chemistry programs

Transition State Optimization

- Use an eigenvector following method: always go uphill in the direction of the lowest Hessian eigenvector
- Usually need a good guess for geometry and Hessian
- Also need a theoretical method that doesn't break down around the transition state region
- Many fancy algorithms exist but most never make it into standard program packages

We can set up a simple Hartree–Fock optimization in Psi4 like this:

```
molecule h2o {
    O
    H 1 0.98
    H 1 0.98 2 105.0
}
```

```
set basis cc-pVDZ
optimize('scf')
```

The program will perform a Hartree–Fock energy and gradient computation at each step. The gradient is a vector with 3N elements (forces on x, y, and z coordinates for each atom), and looks like this:

Atom	X	Y	Z
1	-0.000000	0.000000	-0.038851
2	0.000000	-0.029592	0.019425
3	-0.000000	0.029592	0.019425

(The units are hartree/bohr). Note the symmetry in the gradient.

The optimizer converts the gradient into internal coordinates, computes the force along each internal coordinate, and computes a desired stepsize along each coordinate meant to reach the minimum (the stepsize is scaled by the current estimate for the Hessian).

Coordinate		Previous	Force	Change	New
1 R(1,2)	=	0.980000	-0.290848	-0.036009	0.943991
2 R(1,3)	=	0.980000	-0.290848	-0.036009	0.943991
3 B(2,1,3)	=	105.000000	-0.000367	-1.674663	103.325337

--- Internal Coordinate Step in ANG or DEG, aJ/ANG or AJ/DEG ---

Each time a step is taken, the gradient is recomputed, the Hessian is updated with any new gradient information, and the process is iterated until convergence is achieved (within some tolerance).

Measures of convergence in internal coordinates in au.								
Step	Total Energy	Delta E	MAX Force	RMS Force	MAX Disp	RMS Disp	~	
	-76.024678625	-76.024678625	0.035302	0.028958	0.068041	0.058066	~	
2	-76.026968520	-0.002289895	0.004412	0.003764	0.024060	0.014425	~	
3	-76.027032430	-0.000063910	0.000314	0.000307	0.001501	0.000955	~	
4	-76.027032781	-0.00000350	0.000035	0.000029	0.000059	0.000050	~	
							~	