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Optimization

Many problems in computational chemistry (and scientific

computing in general!) are optimization problems: i.e., finding

the “stationary points” where a multidimensional function has

vanishing gradients.

• The energy as a function of nuclear coordinates. Minima,

transition states may be of interest.

• Error functions depending on parameters (e.g., fitting

molecular mechanics methods).

• Variational electronic structure methods like Hartree-Fock,

MCSCF, CI. Minima are ground states, saddle points are

excited states. (Usually done as matrix diagonalization).



Optimization Methods

• Dumb method: step one variable until the function is a

minimum in this dimension, then go on to other variables,

repeat until no change. This won’t normally work for

complicated functions/many variables.

• Most methods assume an analytic (i.e., directly calculated,

not numerical) gradient is available.

• Some methods assume the Hessian (second derivative) or

an approximation of it is also available.



Steepest Descent

• Step in gradient direction, do a “line minimization” until

the minimum in that direction is reached; repeat.

• Simple approach guaranteed to find minimum but may be

slow; suffers from zig-zags.



Conjugate Gradient Methods

• Improvement on Steepest Descent; attempts not to spoil

previous progress

• Do line minimizations in a direction which is a combination

of the current gradient and the previous one

di = −gi + βidi−1

The different conjugate-gradient methods provide different

ways to choose β; they involve dot products of current and

previous gradients, e.g., Polak-Ribiere:

βPR

i
=

g†
i (gi − gi−1)

g†
i−1

gi−1



Newton-Raphson Methods

Expand the energy function to second order around the current

geometry x0:

E(x) ≈ E(x0) + g†(x− x0) +
1

2
(x− x0)

†H(x− x0)

If we find the stationary point (dE/dx) of this approximate

energy expression, we obtain

(x− x0) = −H−1g

This makes intuitive sense...think about a 1D example like

Harmonic Oscillator. Need larger step if (i) gradient is larger,

or (ii) force constant is smaller. Exact step if quadratic PES

and exact gradient, Hessian.



Newton-Raphson with Diagonal Hessian

Suppose the Hessian matrix H (second derivative of electronic

energy with respect to nuclear coordinates) is diagonalized to

give normal modes and eigenvalues

Hui = ǫiui. (1)

The Newton-Raphson step in terms of the normal modes

becomes

(x− x0) =
∑

i

−Fi

ǫi
ui, (2)

where Fi = g†ui, i.e., the component of the gradient in each

normal mode direction.



Minimize/Maximize

The Newton-Raphson step

(x− x0) =
∑

i

−Fi

ǫi
ui, (3)

minimizes along directions with a positive Hessian eigenvalue

ǫi and maximizes along directions with a negative eigenvalue.

Finds minimum if all ǫi are positive (H positive definite),

otherwise a saddle point if some ǫi are negative. Big problems

if the Hessian has the wrong “local structure.” Can sometimes

solve by level shifting to make positive definite:

(x− x0) =
∑

i

−Fi

ǫi − λ
ui. (4)



Obtaining the Hessian

• Can compute analytically if the program allows it, but can

be slow (can take 10 times as long as energy alone); cost

scales at least as O(N3)

• Can approximate using tables or lower level computations

• Can improve approximate Hessian using gradient informa-

tion gained during optimization: Davidon-Fletcher-Powell

(DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS), Pow-

ell.



Choice of Coordinates

• Z-matrix coordinates: old-style, inefficient

• Cartesian coordinates: even worse, un-natural, not like

normal modes, more of them (3N vs 3N − 6)

• Internal coordinates: simple and symmetry-adapted

• Natural internal coordinates/redundant internal coor-

dinates (Peter Pulay): similar to symmetry-adapted

internals, commonly used now



Multiple minima

• For larger molecules, more minima become possible

• Thermodynamic properties arise from Boltzmann distribu-

tion of all energetically accessible minima

• Can be hard to locate all relevant minima; search depends

on initial guess geometries (and Hessians)

• Methods to help find additional minima: genetic al-

gorithms, molecular dynamics, Monte Carlo methods,

simulated annealing



Constrained Optimization

• Sometimes it’s useful to fix a geometrical parameter and

perform the optimization subject to this constraint

• Can rewrite function to be minimized as a Lagrange

function which is the original function minus a Lagrange

multiplier times a constraint function g = 0

L(x1, x2, · · · , xN , λ) = f(x1, x2, · · · , xN)− λg(x1, x2, · · · , xN)

• Constrained optimization not always well supported by the

quantum chemistry programs



Transition State Optimization

• Use an eigenvector following method: always go uphill in

the direction of the lowest Hessian eigenvector

• Usually need a good guess for geometry and Hessian

• Also need a theoretical method that doesn’t break down

around the transition state region

• Many fancy algorithms exist but most never make it into

standard program packages



Example Optimization

We can set up a simple Hartree–Fock optimization in Psi4 like

this:

molecule h2o {

O

H 1 0.98

H 1 0.98 2 105.0

}

set basis cc-pVDZ

optimize(’scf’)



Example Optimization

The program will perform a Hartree–Fock energy and gradient

computation at each step. The gradient is a vector with 3N

elements (forces on x, y, and z coordinates for each atom), and

looks like this:

-Total Gradient:

Atom X Y Z

------ ----------- ----------- -----------

1 -0.000000 0.000000 -0.038851

2 0.000000 -0.029592 0.019425

3 -0.000000 0.029592 0.019425

(The units are hartree/bohr). Note the symmetry in the

gradient.



Example Optimization

The optimizer converts the gradient into internal coordinates,

computes the force along each internal coordinate, and com-

putes a desired stepsize along each coordinate meant to reach

the minimum (the stepsize is scaled by the current estimate for

the Hessian).
--- Internal Coordinate Step in ANG or DEG, aJ/ANG or AJ/DEG ---

---------------------------------------------------------------------------

Coordinate Previous Force Change New

---------- -------- ------ ------ ------

1 R(1,2) = 0.980000 -0.290848 -0.036009 0.943991

2 R(1,3) = 0.980000 -0.290848 -0.036009 0.943991

3 B(2,1,3) = 105.000000 -0.000367 -1.674663 103.325337

---------------------------------------------------------------------------



Example Optimization

Each time a step is taken, the gradient is recomputed, the

Hessian is updated with any new gradient information, and the

process is iterated until convergence is achieved (within some

tolerance).
Measures of convergence in internal coordinates in au.

------------------------------------------------------------------------------------- ~

Step Total Energy Delta E MAX Force RMS Force MAX Disp RMS Disp ~

------------------------------------------------------------------------------------- ~

1 -76.024678625 -76.024678625 0.035302 0.028958 0.068041 0.058066 ~

2 -76.026968520 -0.002289895 0.004412 0.003764 0.024060 0.014425 ~

3 -76.027032430 -0.000063910 0.000314 0.000307 0.001501 0.000955 ~

4 -76.027032781 -0.000000350 0.000035 0.000029 0.000059 0.000050 ~

------------------------------------------------------------------------------------- ~


