
Introduction to Scientific Computing

Part II: C and C++

C. David Sherrill

School of Chemistry and Biochemistry

Georgia Institute of Technology

The C Programming Language:

• “Low-level” operators

• Created by Dennis Ritchie for the DEC PDP-11 UNIX

operating system, 1970’s

• ANSI standard 1983

• A superset called C++ for object-oriented programming

(Stroustrup, 1980+).

• C/C++ currently dominant programming language (used

to write, e.g., operating systems)

C and Scientific Computing

Scientific computing was traditionally done with Fortran. C

was slow to catch on during the 1980’s. C/C++ taken more

seriously as scientific programs became more complex.

Ab initio programs:

Gaussian-9x: Maybe 60% Fortran, 40% C??

Q-Chem 2.0: 10% C++, 50% C, 40% Fortran

PSI 3.0: 20% C++, 60% C, 20% Fortran

NWChem: C and Fortran

MPQC: 100% C++ (and Curt++ !)

A Minimal C Program

#include <stdio.h>

main()

{

printf("Hello, world!\n");

}

N.b. This is not good ANSI C! Strictly speaking, should have

types.

C is a “Typed” Language

All variables (and functions) must have a given type. Some

allowed types:

int integer

float floating point number, single-precision (bad)

double floating point number, double-precision (good)

char character value

FILE file structure

void A weird catch-all meaning nothing or anything

In C++, you make up your own data types!

An ANSI Approved Hello World

#include <stdio.h>

int main(void)

{

printf("Hello, world!\n");

return(0); /* exit w/ success status */

}

Compiling a Program

To compile a simple C program in UNIX, you invoke the C

compiler (usually named cc) like this:

cc hello-world.c -o hello-world

This would compile a C file called hello-world.c (containing

the previous example, perhaps) and make an executable

program called hello-world. The executable need not have

the same name as the program file. If no name is given by the

-o switch, the program will be named a.out by default.

To compile a C++ program, one would use the C++ compiler

[often named cpp, g++ (GNU), or xlC (IBM)].

To compile two C files into one executable, one first compiles

the C source into object files

cc -c hello-world.c other-file.c

creating hello-world.o and other-file.o. The object files

are linked into the final executable:

cc -o hello-world hello-world.o other-file.o

Often this can be done all in one step as a shortcut like this:

cc -o hello-world hello-world.c other-file.c

Linking Libraries

Frequently one wishes to call standard library functions, such

as the square root function sqrt() from the math library, etc.

These libraries are special files with names ending in a .a suffix

(the a stands for “archive”). Names of libraries usually start

with the previx lib, as in libm.a, the C math library.

To link against a library one uses the -l flag. The math library

can be included by a command like:

cc hello-world.c -o hello-world -lm

The -l flag automatically adds a lib prefix and .a suffix to

determine the library name.

Makefiles for Large Programs

Programs containing more than a few source code files are

best compiled using a special program called make. The make

command reads a file called Makefile to determine how to

compile the program, what libraries to link, etc. An example

follows:

ROOT = /home/users/sherrill/C

LIBS = -L$(ROOT)/lib -lm -lds_io -lds_str

CFLAGS = -I$(ROOT)/include -O

CC = cc

NOBJ = biblio.o cparse.o format.o

SRC = $(NOBJ:%.o=%.c)

biblio: $(NOBJ)

$(CC) $(CFLAGS) $(NOBJ) $(LIBS) -o biblio

clean:

/bin/rm -f $(NOBJ)

DO NOT DELETE THIS LINE -- make depend depends on it

biblio.o: biblio.c

cparse.o: cparse.c

format.o: format.c

A More Complex Program Example

#include <stdio.h>

main()

{

double x, y;

double crazy_function(double x);

x = 4.0;

y = crazy_function(x);

printf("The result is %lf\n", y);

}

double crazy_function(double x)

{

double z;

x = x * x;

z = x + 1.0;

return(z);

}

When run, the program prints

The result is 17.000000

Pass-by-Value

Suppose we modified the previous example as such:

x = 4.0;

y = crazy_function(x);

printf("The result is %lf\n", y);

printf("The value of x is %lf\n", x);

What’s x ? You might think 16.0, but it’s 4.0. How could you

modify crazy function so x would really be changed by it?

Solution I: C Pointers

y = crazy_function(&x);

double crazy_function(double *x)

{

double z;

*x = *x * *x;

z = *x + 1.0;

return(z);

}

Solution I: C++ References

y = crazy_function(x);

double crazy_function(double &x)

{

double z;

x = x * x;

z = x + 1.0;

return(z);

}

Exactly same as original except for declaration of crazy function.

#include <stdio.h>

#include <math.h>

main()

{

double x, y;

x = 4.0;

y = sqrt(x);

printf("The result is %lf\n", y);

}

The result is 2.000000

Why didn’t we need to declare sqrt?

Subroutines Also Called Functions

main()

{

double x;

void dumb_subroutine(double x);

x = 4.0;

dumb_subroutine(x);

}

void dumb_subroutine(double y)

{

printf("The result is %lf\n", y);

}

What’s So Great About C++ ?

• Retains C as a subset

• Has nice new featues like references, constants, and

especially user-defined datatypes or objects

• Object-oriented language: seen as big advantage for very

large codes

• Not very efficient; may need to do computationally intensive

subroutines in C or Fortran (or call optimized math library

like BLAS)

Object-Oriented Programming and C++

• Contrasts to procedural programming

• The program consists of objects which know how to relate

to each other

• Objects “hide” their own data and can only be accessed

through their interfaces — keeps others from messing up

your beautiful code

• Separation of interface from implementation makes up-

grades easier

• C++ programmers tend to write insanely complex code;

natural result of taking object ideas to their limit

Suggested Reading

“The C Programming Language, 2nd ed.,” Brian W. Kernighan

and Dennis M. Ritchie (Prentice Hall, Englewood Cliffs, NJ,

1988).

“The C++ Programming Language, 3rd ed.,” Bjarne Strous-

trup (Addison-Wesley, Reading, MA, 1997).

