
Hartree-Fock Program Project

C. David Sherrill
School of Chemistry and Biochemistry

Georgia Institute of Technology

Updated 14 April 2017
Based on notes by Dr. Yukio Yamaguchi (University of Georgia)

C++ notes provided by Prof. Edward Hohenstein (CCNY)

1 General Information and Outline of the Hartree–Fock

Procedure

Goals: Write a computer program to perform a closed-shell restricted Hartree-Fock computation,
given nuclear repulsion energy and one- and two-electron integrals. These notes describe three
strategies for accomplishing this goal, of which you should choose one: (1) reading the required
data from a plain text file, for the specific case of STO-3G H2O at a specific geometry; (2) obtaining
the required data directly from the Psi4 program package using Psi4’s Python front-end and the
Psi4’s available Python function library; or (3) obtaining the required data from Psi4 using C++
and Psi4’s C++ libraries.

An advantage of strategy (1), the plain text file for STO-3G H2O, is that you are free to
use any computer programming language that you wish (or Matlab, Mathematica, etc.). The
disadvantages are that your program will be limited to working only for this one test case (unless
you can independently generate the required integrals), and that you will have to create/find all
required subroutines (e.g., matrix diagonalization, matrix multiplication, etc.)

An advantage of strategies (2) or (3) is that they will work on general molecules, and you can
leverage existing subroutines provided by Psi4. However, the current documentation for Psi4
C++ libraries is not highly organized, and moreover C++ is generally harder to learn and/or
requires more lines of code to accomplish tasks than Python. Documentation of all functions
required to accomplish the project using Python (strategy (2)) is provided below. Hence, for an
initial project strategy (2) is probably preferred over strategy (3).

Additional Information: See chapter 3 (sections 3.4.4 - 3.4.6) of Modern Quantum Chem-
istry, 1st Ed., Revised, A. Szabo and N. S. Ostlund (McGraw-Hill, New York, 1989).

Procedure: Here we will briefly outline the primary computational steps. In subsequent
sections, we will discuss strategies for implementing these steps.

1

http://www.chemistry.gatech.edu/faculty/Sherrill/
http://www.chemistry.gatech.edu/
http://www.gatech.edu/

1. Get the nuclear repulsion energy (Enuc).

2. Use Psi to compute one-electron integrals

(a) Compute the overlap integrals (S).

(b) Compute the kinetic energy integrals (T).

(c) Compute the potential energy integrals (V).

(d) Form the core Hamiltonian (H), via Hµν = Tµν + Vµν .

3. Construct the orthogonalizing matrix S−1/2

(a) Diagonalize the S matrix,
U †SU = Λ. (1)

(b) Form the S−1/2 matrix,
S−1/2 = UΛ−1/2U †. (2)

4. Construct an initial (guess) density matrix

(a) Form the “core” Fock matrix in the orthogonalized basis via

F ′0 = (S−1/2)†HS−1/2. (3)

(b) Diagonalize the initial Fock matrix using a standard eigenvalue routine such as the
DSYEV routine in the LAPACK library.

C ′†0 F
′
0C
′
0 = ε. (4)

Note: Two steps below this, you will be forming the density matrix using the columns
of C that correspond to occupied orbitals. You need to know which columns of C
correspond to occupied orbitals and which ones correspond to unoccupied orbitals.
Many standard diagonalizers will sort the eigenvalues and eigenvectors for you, and if
they sort them in increasing order of the eigenvalues, then you can just take the first
N/2 columns of C when forming the D matrix, where N is the number of electrons (and
hence N/2 is the number of doubly-occupied orbitals). But if your matrix diagonalizer
does not sort the eigenvalues/eigenvectors, you will have to sort them yourself or else
somehow make sure you are using the correct columns of C when forming D below.

(c) Form the initial SCF eigenvector matrix in the original basis

C0 = S−1/2C ′0. (5)

2

(d) Form the initial density matrix, D

Dµν =
N/2∑
i

CµiCνi, (6)

where N is the number of electrons (and hence N/2 is the number of doubly-occupied
orbitals).

5. Perform the SCF iterations

(a) Form the new Fock matrix, F, from the density matrix and the two-electron integrals

Fµν = Hµν +
AO∑
ρσ

Dρσ {2[µν|ρσ]− [µρ|νσ]} . (7)

(b) Calculate the electronic energy

E =
AO∑
µν

Dµν (Hµν + Fµν) + Enuc. (8)

(c) Transform the Fock matrix to the orthonormal basis

F ′ = (S−1/2)†FS−1/2. (9)

(d) Diagonalize the Fock matrix
C ′†F ′C ′ = ε. (10)

As discussed above, you probably want to ensure the eigenvectors (columns of C) are
sorted so that the corresponding eigenvalues are in increasing order.

(e) Construct the new SCF eigenvector matrix

C = S−1/2C ′ (11)

(f) Form the new density matrix

Dµν =
N/2∑
i

CµiCνi, (12)

where N/2 is the number of doubly-occupied orbitals.

(g) Test for convergence of the energy.

∆E = En − En−1 < δE (13)

3

(h) Optionally, also test convergence of the density and/or Fock matrix. One simple way
to do this is just to compute the RMS change in the density matrix:

Drms =

[
AO∑
µν

(
Dn
µν −Dn−1

µν

)2]1/2
< δD (14)

This criterion is fine for small systems. For very large systems, it will become harder
for this criterion to be met for a fixed RMS cutoff value. An alternative criterion that
is sometimes used is the commutator of the density matrix and the Fock matrix, which
will go to zero at convergence.

[D,F]µν =
AO∑
ρσ

SµρDρσFσν − FµρDρσSσν (15)

‖[D,F]‖F < δD (16)

(i) If not converged, do another iteration.

2 Project writeup

Before discussing three different technical strategies for performing the project, if you are doing
this project as a class project, below are some suggestions for what to include in your project
write-up (if you are just doing this as part of a research experience there is probably no reason to
do a formal writeup).

1. Include a short introduction giving a brief re-cap of what Hartree-Fock is and how it works,
in your own words

2. Give an introduction to how you coded the program: what language (or program like Math-
ematica) did you use, why did you pick that language, what features of the language were
helpful, what things did the language not provide automatically that you had to code up
yourself, did you have to use any special tricks, etc.

3. Provide the actual source code of your Hartree-Fock program and any helper functions you
had to write

4. Provide at least one sample output from your program (including the corresponding input
file, if you are not using the H2O integrals file from Coding Strategy #1 below).

5. If you did not obtain the correct Hartree-Fock energy, explain what you think might have
gone wrong with your program.

4

3 Coding strategy #1: reading data from a text file for a

specific test case

The required data for STO-3G H2O at its equilibrium geometry is available on the Sherrill group
website at http://vergil.chemistry.gatech.edu/h2oints.txt. The file should be self-explanatory.
There are 7 orbitals for this system in the STO-3G basis. Note that the numbering of orbitals in
the two-electron integrals starts at 0. Feel free to reformat the file to suit your purposes.

Important note: The printout of the two-electron integrals only lists the permutationally unique
integrals. Recall that the two-electron integrals have 8-fold permutational symmetry when using
real orbitals:

[pq|rs] = [qp|rs] = [pq|sr] = [qp|sr] = [rs|pq] = [sr|pq] = [rs|qp] = [sr|qp]. (17)

The equations given above for the Fock matrix assume all possible permutations of integrals
are available. That means that in forming the Fock matrix you may find yourself needing integral
[21|34], and you need to realize that it doesn’t appear that way in the list, it appears as [43|21].
The integrals listed follow the canonical order that p ≥ q, r ≥ s, and with the indices on the left
being larger than those on the right (this last requirement can be stated more formally by saying
Psi4 requires that the “super-indices” pq and rs satisfy the requirement that pq ≥ rs, where
pq = (p(p+ 1)/2) + q, and analogously for rs, and with orbital numbering beginning with 0).

4 Coding strategy #2: Writing a general program in Python

using Psi4

Another option for getting the required integrals is to interface to a program like Psi4. This is
relatively easy to do using Psi4’s very user/programmer-friendly Python front-end, which allows
user input files to include not only molecule/computation information, but also any valid Python
code. This means that it is possible to write a Hartree–Fock program in Psi4 using only the Psi4
binary and a single user input file. Python is a high-level language (i.e., it is easy to accomplish
a lot in relatively few lines of code), it is widely used, and it is fairly easy to learn.

This approach will require you to install (or have access to) a binary of the Psi4 program.
If you do not already have login access to a machine with Psi4 on it, you can either download
and install a Psi4 binary (easiest), or download the Psi4 source and compile and install it. To
download and install a binary, see the

5

http://vergil.chemistry.gatech.edu/h2oints.txt

“Psi4 Downloads”.

If you create your program this way, once the Psi4 binary is available, you just need to create
your program in an input file according to the template provided in Figure 1 and execute it from
Psi4 like this: psi4 my-program.in.

Figure 1: Overall skeleton of a Psi4 program in an input file.

Your program goes first, at the top of the file

def simple_scf(molecule):

make sure the molecule object gets correctly populated with

the current geometry

molecule.update_geometry()

your Python program goes here, takes a Psi4 molecule as input

after your program, then specify a molecule using normal

Psi4 input and run the SCF using your python SCF code and then also

with the usual Psi4 SCF code, so that you can compare final energies.

You should be able to pick any small molecule you like

(although we will assume RHF so make it closed-shell).

molecule mol {

0 1

O

H 1 1.0

H 1 1.0 2 104.5

symmetry c1

}

set {

basis sto-3g

}

simple_scf(mol)

set scf_type direct

energy(’scf’)

Psi4 provides routines that make one- and two-electron integrals available in Python, and

6

http://www.psicode.org/downloads.html

a Matrix class that allows various operations like matrix multiplication, matrix diagonalization,
etc. It also has a Molecule class that allows one to grab useful information from a user-specified
molecule, like its overall charge, etc. All the functions necessary to write a Hartree–Fock program
should be given below. However, you can find a complete list of all Psi4 functions available from
Python in the Linking C++ and Python section of the Psi4 Manual.

Figure 2 illustrates how to use Psi4’s integral generation routines to form all the required one-
and two-electron integrals and make them accessible through Psi Matrix objects. Note: these
matrices are all stored in core RAM; because the two-electron integrals are an O(N4) quantity,
you should stick to small test cases with your program. The integrals will be generated for the
current default Molecule object; the skeleton program above will correctly specify a mol as the
default (and only) molecule object, so there is no ambiguity.

Figure 2: Using Psi4’s MintsHelper to generate integrals

Integral Generation

wfn = Wavefunction.build(mol, get_global_option("basis"))

mints = MintsHelper(wfn.basisset())

S = mints.ao_overlap()

T = mints.ao_potential()

V = mints.ao_kinetic()

I = mints.ao_eri()

S, T, and V are all square matrices of size nbf x nbf, where nbf is the number of AO ba-
sis functions, which can be obtained by querrying the matrices about their number of rows (or
columns), like this: nbf = S.rows(0). The two-electron integrals are formally represented by a
4-dimensional tensor, but the Psi4 MintsHelper object packs them into a (2-dimensional) Matrix
for convenience. It accomplishes this by computing a “composite” row index pq = p ∗ nbf + q,
where p and q are individual orbital indices.

The Psi4 Matrix objects have various built-in capabilities. Some of them are as follows:

1. Create new Matrix X with nrows rows and ncols cols: X = Matrix(nrows, ncols)

2. Get the p, q element of X: val = X.get(p,q)

3. Set the p, q element of X to val: X.set(p,q,val)

4. Add J to F : F.add(J)

5. Subtract K from F : F.subtract(K)

7

http://psicode.org/psi4manual/master/psi4api.html
http://psicode.org/psi4manual/master/index.html

6. Multiply X by 2: X.scale(2.0)

7. Copy X to Y : Y = X.clone()

8. Matrix multiplication C = βC + αAB (set β = 0 if the result of αAB is to overwrite
C instead of add to it): X.gemm(transa, transb, alpha, A, B, beta), where transa =

True if we need to transpose matrix A (otherwise transa = False), and transb = True if
we need to transpose matrix B (otherwise transb = False).

9. Diagonalization of a symmetric Matrix:
X.diagonalize(evecs, evals, DiagonalizeOrder.Ascending) will diagonalize symmet-
ric matrix X, placing the eigenvectors in matrix evecs (one eigenvector per column) and the
corresponding eigenvalues in evals, which is a Vector. Both evecs and evals should have
already been created by the user (e.g., evecs = Matrix(n,n) and evals = Vector(n)).
Note: this routine does not necessarily actually change the original matrix X to diagonal
form.

10. Raise a matrix to the p-th power: X.power(p, 0.0)

11. Compute an element-wise dot product between two matrices (i.e.,
∑
pq Apq · Bpq): r =

A.vector dot(B)

For this project you can specify molecular information like the charge, multiplicity, and number
of electrons directly in your code, but it is more elegant to parse these out of the Molecule object
itself. This is easily done as in Figure 3. Since your program assumes RHF, if you parse the
information this way, your program should check to make sure mult = 1 before it continues.

Figure 3: Using Psi4’s Molecule object to get information

charge = molecule.molecular_charge()

mult = molecule.multiplicity()

Z = 0

for A in range(molecule.natom()):

Z += molecule.Z(A)

ndocc = int(Z / 2) - (charge / 2) # number of doubly-occupied orbitals

Enuc = molecule.nuclear_repulsion_energy()

8

5 Coding strategy #3: Writing a general program in C++

using Psi4

[Note: Psi4 has changed over the last couple of years since we wrote these notes. The plugin
information is likely obsolete. I recommend using one of the two options above until we can
update this part of the notes. –CDS]

This section describes how to use integrals and C++ libraries from Psi4 to write your program
as a Psi4 “plugin.” A plugin is compiled as a shared library and loaded by Psi4 at runtime. This
has the advantage of making your program completely separate from the Psi4 source, while still
allowing you access to all of Psi4’s libraries. You will need to download the source code to the
Psi4 package from www.psicode.org and get it compiled successfully.

1. Creating a new plugin
Rather conveniently, you can create a new plugin by running PSI4 with the --new-plugin

command line option.

psi4 --new-plugin [plugin name]

This will create a new directory with a Makefile, minimal source file, and sample input.

2. Compiling your plugin
If you created your plugin with --new-plugin and your environment was configured prop-
erly, everything should just work. Typing Make in your plugin directory should produce an
appropriately named .so file.

3. Running your plugin
In the PSI4 input file, there needs to be a call to plugin load("Path to your plugin") for
initialization and a call to plugin("Path to your plugin") to run it. The sample input
file created by --new-plugin will do this properly.

General features of PSI4
The following is an overview of the important classes in PSI4 that will be needed to complete this
project. Examples of how to construct these classes can be found in the accompanying example
plugin.

1. boost::shared ptr

These have permeated the entirety of the code. Essentially, these are just pointers with
reference counting; moreover, they can be treated as though they were allocated with new,
but do not need to be deleted.

9

http://www.psicode.org

2. SharedMatrix ≡ boost::shared ptr<Matrix>

This is PSI’s Matrix class. Many matrix operations are defined for this class, the full
definition can be found in

$PSI/src/lib/libmints/matrix.h

To avoid using the Matrix class, the underlying array is stored two dimensionally as a
double** pointing to a contiguous chuck of memory. This can be obtained for some
SharedMatrix, A, as

double **Aptr = A->pointer();

3. Process::environment

The pertinence of this object is that it allows communication between the PSI4 program
and your plugin. References to various objects contained in PSI can be obtained from this
object.

4. Molecule

PSI’s molecule class contains information about the molecular geometry and is needed to
construct many other classes in PSI4. Molecule is defined in

$PSI/src/lib/libmints/molecule.h

5. BasisSet

This class contains the basis set definition for the molecule. It contains information such as
the number of basis functions and the number of shells. BasisSet is defined in

$PSI/src/lib/libmints/basisset.h

6. Options

This class allows you to interact with the PSI4 input file by defining options that are unique
to your plugin.

$PSI/src/lib/liboptions/liboptions.h

Functions that begin with add can be used to introduce new options of a certain type in
the read options function in the plugin. The corresponding calls to get will retrive the
value of the option set in the input or the default value.

Selected useful functions
This is a list of functions that may prove useful in writing your program. Some of these functions
are defined in:

$PSI/src/lib/libciomr/libciomr.h

10

1. Allocating 1D arrays
Obviously, malloc and new are available. In PSI, the allocation of 1D arrays of doubles
is wrapped in double *init array(unsigned long int); the allocation of a 1D array of
integers is possible via int *init int array(unsigned long int). These functions will
also initialize the arrays to zero. Arrays allocated in this manner should be freed with the
usual free.

2. Allocating 2D arrays
To allocate a contiguous 2D array of doubles, PSI provides double **block matrix(unsigned

long int, unsigned long int), which also zeros the array. These can be freed with void

free block(double **).

3. Obtaining useful quantities

(a) Number of basis functions: int BasisSet::nbf()

(b) Number of shells: int BasisSet::nshell()

(c) Nuclear repulsion energy: double Molecule::nuclear repulsion energy()

(d) Number of electrons: This is actually difficult to extract from PSI in this context.
It could be made an input parameter to your plugin. The alternative is to get the
net charge from Molecule and add up the atomic charges to determine the number of
electrons.

Useful linear algebra routines
Here are a list of the PSI wrappers to several useful BLAS and LAPACK functions. Note that
the difference in C-style versus FORTRAN-style indexing can lead to some confusion when call-
ing these functions. In some cases, notably DGEMV and DGEMM, PSI will take arguments in
C-style and perform the necessary transpositions to FORTRAN-style indexing when it calls the
underlying BLAS routine. The BLAS and LAPACK wrappers are found in the following files
along with extensive comments:

$PSI/src/lib/libqt/blas intfc.cc

$PSI/src/lib/libqt/blas intfc23

$PSI/src/lib/libqt/lapack intfc.cc Don’t forget that BLAS and LAPACK will assume ar-
rays are stored in linear memory. If you use PSI’s functions for allocating memory, this won’t
become a problem.

1. Scaling a vector

void C DSCAL(unsigned long int length, double alpha, double *vec, int inc)

11

2. Copying a vector

void C DCOPY(unsigned long int length, double *x, int inc x,

double *y, int inc y)

3. Adding two vectors

void C DAXPY(unsigned long int length, double a, double *x, int inc x,

double *y, int inc y)

4. Dot product

double C DDOT(unsigned long int length, double *x, int inc x,

double *y, int inc y)

5. Matrix-vector multiplication

void C DGEMV(char trans, int m, int n, double alpha, double* a, int lda,

double* x, int incx, double beta, double* y, int incy)

6. Matrix-matrix multiplication

void C DGEMM(char transa, char transb, int m, int n, int k, double alpha,

double* a, int lda, double* b, int ldb, double beta, double* c, int ldc)

7. Matrix diagonalization

int C DSYEV(char jobz, char uplo, int n, double* a, int lda, double* w,

double* work, int lwork)

Computing integrals with PSI4

1. Set up
In order to create an object than generates integrals, an IntegralFactory must be con-
structed in order to build one-body or two-body integral objects. The factory will do some
generic initialization and allows basis sets to be specified.

2. Computing one-electron integrals with PSI4
One electron integrals can be computed in a single function call with the result stored in a
SharedMatrix.

(a) Overlap integrals
A call to IntegralFactory::ao overlap will provide a one-body integral object than
can be used to construct the overlap integrals.

12

(b) Potential integrals
A call to IntegralFactory::ao potential will provide a one-body integral object
than can be used to construct the nuclear attraction integrals.

(c) Kinetic integrals
A call to IntegralFactory::ao kinetic will provide a one-body integral object than
can be used to construct the kinetic energy integrals.

3. Computing two-electron integrals with PSI4
The evaluation of the two-electron integrals is the most computationally intensive operation
in a Hartree-Fock program. An object capable of generating the two-electron integrals can
be obtained from the IntegralFactory.

(a) Two-body integral object
By calling IntegralFactory::eri(), a two-body integral object can be obtained that
will generate electron repulsion integrals. The integrals generated by this object are
indexed in Chemist’s notation.

(b) Shell quartets
Two-electron integrals are not evaluated individually, but, rather a shell quartet at a
time (e.g. ssss, sssp, etc.). The individual integrals are stored in an array in the two-
body object. A pointer to this array is available for some shared ptr<TwoBodyAOInt>

eri:

const double *buffer = eri->buffer();

Inside this buffer, the integrals are indexed with a compound index. That is for a shell
quartet, (PQ|RS), with NP functions in shell P indexed with p, etc. The compound
index for integral (pq|rs) is given as:
pqrs = p ∗NQ ∗NR ∗NS + q ∗NR ∗NS + r ∗NS + s.

(c) Loop structure
While it is possible to interact with the two-body integral object in other ways, the code
snippet in Figure 4 defines a transparent loop structure using boost::shared ptr<BasisSet>

aoBasis.

13

Figure 4: A naive loop structure to evaluate every two-electron integral.

// Loop over all shells

for(int MU=0; MU<aoBasis->nshell(); MU++) {

// Get the number of functions in the shell

int nummu = aoBasis->shell(MU).nfunction();

for(int NU=0; NU<aoBasis->nshell(); NU++) {

int numnu = aoBasis->shell(NU).nfunction();

for(int RHO=0; RHO<aoBasis->nshell(); RHO++) {

int numrho = aoBasis->shell(RHO).nfunction();

for(int SIG=0; SIG<aoBasis->nshell(); SIG++) {

int numsig = aoBasis->shell(SIG).nfunction();

// Compute the shell quartet

eri->compute_shell(MU,NU,RHO,SIG);

// Loop over all functions in the shell

for(int mu=0, munu=0, index=0; mu<nummu; mu++) {

// Extract the absolute index of the first function

int omu = aoBasis->shell(MU).function_index() + mu;

for(int nu=0; nu<numnu; nu++, munu++) {

int onu = aoBasis->shell(NU).function_index() + nu;

for(int rho=0; rho<numrho; rho++) {

int orho = aoBasis->shell(RHO).function_index() + rho;

for(int sig=0; sig<numsig; sig++, index++) {

int osig = aoBasis->shell(SIG).function_index() + sig;

// buffer[index] contains (omu onu| orho osig)

double tei = buffer[index];

} // End sig function index

} // End rho function index

} // End nu function index

} // End mu function index

} // End SIG Shell index

} // End RHO Shell index

} // End NU Shell index

} // End MU Shell index

14

	General Information and Outline of the Hartree–Fock Procedure
	Project writeup
	Coding strategy #1: reading data from a text file for a specific test case
	Coding strategy #2: Writing a general program in Python using Psi4
	Coding strategy #3: Writing a general program in C++ using Psi4

