
On the Time Evolution of Wavefunctions

in Quantum Mechanics

C. David Sherrill
School of Chemistry and Biochemistry

Georgia Institute of Technology
October 1999

1 Introduction

The purpose of these notes is to help you appreciate the connection between eigenfunctions of the
Hamiltonian and classical normal modes, and to help you understand the time propagator.

2 The Classical Coupled Mass Problem

Here we will review the results of the coupled mass problem, Example 1.8.6 from Shankar. This is
an example from classical physics which nevertheless demonstrates some of the essential features of
coupled degrees of freedom in quantum mechanical problems and a general approach for removing
such coupling. The problem involves two objects of equal mass, connected to two different walls
and also to each other by springs. Using F = ma and Hooke’s Law (F = −kx) for the springs,
and denoting the displacements of the two masses as x1 and x2, it is straightforward to deduce
equations for the acceleration (second derivative in time, ẍ1 and ẍ2):

ẍ1 = −2k
m

x1 +
k

m
x2 (1)

ẍ2 =
k

m
x1 − 2k

m
x2. (2)

The goal of the problem is to solve these second-order differential equations to obtain the
functions x1(t) and x2(t) describing the motion of the two masses at any given time. Since
they are second-order differential equations, we need two initial conditions for each variable, i.e.,
x1(0), ẋ1(0), x2(0), and ẋ2(0).

Our two differential equations are clearly coupled, since ẍ1 depends not only on x1, but also on
x2 (and likewise for ẍ2). This makes the equations difficult to solve! The solution was to write the
differential equations in matrix form, and then diagonalize the matrix to obtain the eigenvectors
and eigenvalues.
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In matrix form, we have [
ẍ1

ẍ2

]
=

[ −2γ γ
γ −2γ

] [
x1

x2

]
, (3)

where γ = k/m. Since this 2x2 matrix is real and symmetric, it must also be Hermitian, so we
know that it has real eigenvalues, and that the eigenvectors will be linearly independent and can
be made to form an orthonormal basis.

Equation 3 is a particular form of the more general equation (in Dirac notation)

|ẍ(t)〉 = Ω̂|x(t)〉 (4)

where we have picked a basis set which we will call {|1〉, |2〉}, where

|1〉 =
[
1
0

]
(5)

represents a unit displacement for coordinate x1, and likewise

|2〉 =
[
0
1

]
(6)

represents a unit displacement for coordinate x2. Clearly any state of the system (x1, x2) can be
written as a column vector [

x1

x2

]
(7)

(as in eq. 3), which can always be decomposed into our {|1〉, |2〉} basis as
[

x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
(8)

or
|x〉 = x1|1〉+ x2|2〉. (9)

Hence, eq. 3 can be considered a representation of the more general eq. 4 in the {|1〉, |2〉} basis.
If we assume the initial velocities are zero, then we should be able to predict x1(t) and x2(t)

directly from x1(0) and x2(0). Thus, we seek a solution of the form[
x1(t)
x2(t)

]
=

[
G11(t) G12(t)
G21(t) G22(t)

] [
x1(0)
x2(0)

]
, (10)

where G(t) is a matrix, called the propagator, that lets us get motion at future times from the
initial conditions. We will have to figure out what G(t) is.
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Again, the strategy is to diagonalize Ω. The point of diagonalizing Ω is that, as you can see
from eq. 3, the coupling between x1 and x2 goes away if Ω becomes a diagonal matrix. You can
easily verify that the eigenvectors and their corresponding eigenvalues, which we will label with
Roman numerals I and II, are

λI = −γ, |I〉 = 1√
2

[
1
1

]
(11)

λII = −3γ, |II〉 = 1√
2

[
1

−1
]

(12)

This new basis, the eigenvector basis, is just as legitimate as our original {|1〉, |2〉} basis, and is in
fact better in the sense that it diagonalizes Ω. So, instead of using the {|1〉, |2〉} basis to obtain
eq. 3 from eq. 4, we can use the {|I〉, |II〉} basis to obtain[

ẍI

ẍII

]
=

[
λI 0
0 λII

] [
xI

xII

]
, (13)

so that now ẍI depends only on xI, and ẍII depends only on xII. The equations are uncoupled!
Note that we are now expanding the solution |x〉 in the {|I〉, |II〉} basis, so the components in this
basis are now xI and xII instead of x1 and x2:

|x〉 = xI|I〉+ xII|II〉. (14)

Of course it is possible to switch between the {|1〉, |2〉} basis and the {|I〉, |II〉} basis. If we
define our basis set transformation matrix as that obtained by making each column one of the
eigenvectors of Ω, we obtain

U =
1√
2

[
1 1
1 −1

]
, (15)

which is a unitary matrix (it has to be since Ω is Hermitian). Vectors in the two basis sets are
related by [

x1

x2

]
= U

[
xI

xII

]
,

[
xI

xII

]
= U†

[
x1

x2

]
. (16)

In this case, U is special because U = U†; this doesn’t generally happen. You can verify that the
Ω matrix, when transformed into the {|I〉, |II〉} basis via U†ΩU, becomes the diagonal matrix in
equation 13.

The matrix equation 13 is of course equivalent to the two simple equations

ẍI = −γxI (17)

ẍII = −3γxII, (18)
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and you can see that valid solutions (assuming that the initial velocities are zero) are

xI(t) = xI(0)cos(ωIt) (19)

xII(t) = xII(0)cos(ωIIt), (20)

where we have defined

ωI =
√

γ (21)

ωII =
√
3γ. (22)

So, the {|I〉, |II〉} basis is very special, since any motion of the system can be decomposed into
two decoupled motions described by eigenvectors |I〉 and |II〉. In other words, if the system has its
initial conditions as some multiple of |I〉, it will never exhibit any motion of the type |II〉 at later
times, and vice-versa. In this context, the special vibrations described by |I〉 and |II〉 are called
the normal modes of the system.

So, are we done? If we are content to work everything in the {|I〉, |II〉} basis, yes. However,
our original goal was to find the propagator G(t) (from eq. 10) in the original {|1〉, |2〉} basis. But
notice that we already have G(t) in the {|I〉, |II〉} basis! We can simply rewrite equations 19 and
20 in matrix form as [

xI(t)
xII(t)

]
=

[
cos(ωIt) 0

0 cos(ωIIt)

] [
xI(0)
xII(0)

]
. (23)

So, the propagator in the {|I〉, |II〉} basis is just

G(t)|I〉,|II〉 =

[
cos(ωIt) 0

0 cos(ωIIt)

]
. (24)

To obtain G(t) in the original basis, we just have to apply the transformation

G(t)|1〉,|2〉 = UG(t)|I〉,|II〉U†, (25)

noting that this is the reverse transform from that needed to bring Ω from the original to the
eigenvector basis (so that U and U† swap). Working out G(t)|1〉,|2〉 was a problem in Problem Set
II.

Finally, let us step back to the more general Dirac notation to point out that the general form
of the solution is

|x(t)〉 = Ĝ(t)|x(0)〉, (26)

and actual calculation just requires choosing a particular basis set and figuring out the components
of |x(t)〉 and |x(0)〉 and the matrix elements of operator Ĝ(t) in that basis. Another representation
of operator Ĝ(t) is clearly

Ĝ(t) = |I〉〈I|cos(ωIt) + |II〉〈II|cos(ωIIt), (27)
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as you can check by evaluating the matrix elements in the {|I〉, |II〉} basis to get eq. 24. Thus

|x(t)〉 = Ĝ(t)|x(0)〉
= |I〉〈I|x(0)〉cos(ωIt) + |II〉〈II|x(0)〉cos(ωIIt) (28)

2.1 Summary

A coupled system of differential equations was solved by writing the equations in matrix form,
diagonalizing the matrix, and changing to the eigenvector basis which decoupled the equations
and made them easily solvable. The propagator was easily obtained in the eigenvector basis. The
problem is then solved either by (i) finding the components of the initial state in the eigenvector
basis, and writing the solution in the eigenvector basis, or (ii) keeping the initial state in the
original basis and instead transforming the propagator from the eigenvector basis into the original
basis.

3 Decoupling of Equations in Quantum Mechanics

Recall that the time-dependent Schrödinger equation is

ih̄
dΨ(r, t)

dt
= ĤΨ(r, t), (29)

where r represents the set of all Cartesian coordinates of all particles in the system. If we assume
that Ĥ is time-independent, and if we pretend that Ĥ is just a number, than we can be confident
that the solution is just

Ψ(r, t) = e−iĤt/h̄Ψ(r, 0). (30)

In fact, this remains true even though Ĥ is of course an operator, not just a number. So, the
propagator in quantum mechanics is

Ĝ(t) = e−iĤt/h̄. (31)

3.1 Basis Functions in Coordinate Space

Now imagine that we have a problem where the wavefunction can be expanded as a sum of only
two basis functions (admittedly unlikely, but perhaps useful for a single electron spin problem):

Ψ(r, t) = c1(t)Φ1(r) + c2(t)Φ2(r). (32)
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This leads to the time-dependent Schrödinger equation (where we will suppress variables r and t
for convenience):

ih̄ (ċ1Φ1 + ċ2Φ2) = Ĥ (c1Φ1 + c2Φ2) . (33)

How do we solve this equation? It’s a coupled differential equation, similar to eq. 1 except that it’s
first-order instead of second order. Just as in the classical example, it’s the coupling that makes
it hard to solve! In the classical case, the answer to coupling was to get the eigenfunctions. What
happens if we assume Φ1 and Φ2 to be eigenfunctions of Ĥ? In that case,

ĤΦ1 = E1Φ1 (34)

ĤΦ2 = E2Φ2 (35)

and the time-dependent equation becomes

ih̄ (ċ1Φ1 + ċ2Φ2) = c1E1Φ1 + c2E2Φ2. (36)

Furthermore, since the eigenvectors of a Hermitian operator are or can be made orthogonal, we
can multiply by Φ∗

1 and Φ
∗
2 and integrate over dr to obtain

ih̄ċ1 = c1E1 (37)

ih̄ċ2 = c2E2 (38)

which are simple first-order differential equations solved by

c1(t) = c1(0)e
−iE1t/h̄ (39)

c2(t) = c2(0)e
−iE2t/h̄ (40)

as you can verify by substituting and differentiating.

But what if our original wavefunction Ψ(r, t) is not given as a linear combination of eigen-
functions? A good strategy is to re-write it so that it is! In the coordinate representation (i.e.,
r space), we can get the coefficients ci(0) in an expansion over orthogonal eigenfunctions Φi(r)
simply as

ci(0) =
∫
Φ∗

i (r)Ψ(r, 0)dr. (41)

The other strategy would be to try to re-write the propagator in the original basis set. In the
problems we do, we will usually use the first approach.

3.2 Matrix Version

We can use matrix notation to re-do the problem above. The time-dependent Schrödinger equation
in the original {Φ1(r),Φ2(r)} basis becomes

ih̄

[
ċ1

ċ2

]
=

[
H11 H12

H21 H22

] [
c1

c2

]
. (42)
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Now, just as in eq. 3, we can see that if H was a diagonal matrix, then the equations for c1 and
c2 would become decoupled. Again, we can make H diagonal by going to the special basis made
of the eigenvectors of H. In this new basis, we will denote vector coefficients and matrix elements
with tildes as a reminder that the basis set has changed, and we obtain:

ih̄

[
˙̃c1

˙̃c2

]
=

[
H̃11 0

0 H̃22

] [
c̃1

c̃2

]
. (43)

Now remember that we’ve gone to the eigenvector basis (which we’ll also denote with tildes to
distinguish it from the original basis), so we know that

ĤΦ̃1(r) = E1Φ̃1(r) (44)

ĤΦ̃2(r) = E2Φ̃2(r). (45)

Thus we can further simplify the diagonal elements as

H̃11 =
∫
Φ̃∗

1(r)ĤΦ̃1(r)dr (46)

= E1

∫
Φ̃∗

1(r)Φ̃1(r)dr

= E1

for normalized basis functions. Likewise of course H̃22 = E2. Hence, we can expand our matrix
equation 43 as

ih̄ ˙̃c1 = c̃1E1 (47)

ih̄ ˙̃c2 = c̃2E2 (48)

which is the same thing we got before when we assumed the given functions were orthonormal.
The only difference is that here we emphasized the diagonalization of H rather than getting the
eigenvectors, but of course it is the same process. These decoupled equations can be solved the
same way as before to give

c̃1(t) = c̃1(0)e
−iE1t/h̄ (49)

c̃2(t) = c̃2(0)e
−iE2t/h̄, (50)

which we could write back in matrix notation (still in the eigenvector or tilde basis) as[
c̃1(t)
c̃2(t)

]
=

[
e−iE1t/h̄ 0
0 e−iE2t/h̄

] [
c̃1(0)
c̃2(0)

]
. (51)

We can identify the matrix as the propagator,

G̃(t) =

[
e−iE1t/h̄ 0
0 e−iE2t/h̄

]
(52)
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in the eigenvector basis.

In the vector/matrix representation, we can go from our original to our tilde coefficients and
back as [

c1(t)
c2(t)

]
= U

[
c̃1(t)
c̃2(t)

]
(53)

[
c̃1(t)
c̃2(t)

]
= U†

[
c1(t)
c2(t)

]
, (54)

where U is the matrix made by making each column an eigenvector of Ĥ in the original basis. We
could transform our propagator G̃(t) from the eigenvector basis to the original basis by

G(t) = UG̃(t)U†. (55)

3.3 Dirac Notation Version

Let us do the same problem yet again in Dirac or Bracket notation. For this version, let’s go
ahead and assume that we expand our state function |Ψ〉 directly in terms of the Hamiltonian
eigenvectors

|Ψ(t)〉 = c1(t)|Φ1〉+ c2(t)|Φ2〉. (56)

When substituted into the time-dependent Schrödinger equation, this gives

ih̄ (ċ1(t)|Φ1〉+ ċ2(t)|Φ2〉) = Ĥ (c1(t)|Φ1〉+ c2(t)|Φ2〉) (57)

= E1c1(t)|Φ1〉+ E2c2(t)|Φ2〉.
Now multiply on the left by 〈Φ1| and 〈Φ2|, respectively, and use 〈Φi|Φj〉 = δij to obtain

ih̄ċ1(t) = E1c1(t) (58)

ih̄ċ2(t) = E2c2(t), (59)

just as before, with solutions once again

c1(t) = c1(0)e
−iE1t/h̄ (60)

c2(t) = c2(0)e
−iE2t/h̄. (61)

But what if we are given |Ψ(0)〉 in a form that looks different from that of eq. 56? Since the
eigenvector basis must be complete (although it will usually have more than two basis vectors,
as in this example!), we can always rewrite our state vector in this form, and the coefficients can
always be computed as

ci(0) = 〈Φi|Ψ(0)〉. (62)
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Note that in this subsection we aren’t assuming anything about whether we are working in co-
ordinate (r) space or momentum (p) space or some other space. However, if we were working in
coordinate space, we could insert the resolution of the identity

Î =
∫

dr|r〉〈r| (63)

to obtain

ci(0) =
∫
〈Φi|r〉〈r|Ψ(0)〉dr

=
∫
Φ∗

i (r)Ψ(r, 0)dr, (64)

completely consistent with everything above. The propagator may be written as

Ĝ(t) = |Φ1〉〈Φ1|e−iE1t/h̄ + |Φ2〉〈Φ2|e−iE2t/h̄ (65)

again with |Φ1〉 and |Φ2〉 here representing eigenfunctions of Ĥ with eigenvalues E1 and E2,
respectively. Note the similarity between this propagator and that from the classical example in
eq. 27. The only real difference is that there, we chose to work with cosines as a phase factor,
and here we are using the more general exponential. Evidently the frequency here is represented
by Ei/h̄. You can verify that in the eigenvector basis, this operator becomes G̃(t) from eq. 52
in the previous section. Hopefully you can also see that in the eigenvector basis this definition is
equivalent to the more general form 31.
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