
A Brief Review of
Elementary Quantum Chemistry

C. David Sherrill
School of Chemistry and Biochemistry

Georgia Institute of Technology

Last Revised on 27 January 2001

1



Contents

1 The Motivation for Quantum Mechanics 4

1.1 The Ultraviolet Catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Quantization of Electronic Angular Momentum . . . . . . . . . . . . . . . . . . . 6

1.4 Wave-Particle Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Schrödinger Equation 8

2.1 The Time-Independent Schrödinger Equation . . . . . . . . . . . . . . . . . . . . 8

2.2 The Time-Dependent Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . 10

3 Mathematical Background 12

3.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Operators and Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Basic Properties of Operators . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 Eigenfunctions and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.5 Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.6 Unitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Commutators in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Linear Vector Spaces in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 20

4 Postulates of Quantum Mechanics 26

5 Some Analytically Soluble Problems 29

5.1 The Particle in a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



5.2 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 The Rigid Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 The Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Approximate Methods 33

6.1 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 The Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Molecular Quantum Mechanics 39

7.1 The Molecular Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Separation of the Nuclear Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Solving the Electronic Eigenvalue Problem 45

8.1 The Nature of Many-Electron Wavefunctions . . . . . . . . . . . . . . . . . . . . . 45

8.2 Matrix Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



1 The Motivation for Quantum Mechanics

Physicists at the end of the nineteenth century believed that most of the funda-
mental physical laws had been worked out. They expected only minor refinements
to get “an extra decimal place” of accuracy. As it turns out, the field of physics
was transformed profoundly in the early twentieth century by Einstein’s discovery
of relativity and by the development of quantum mechanics. While relativity has
had fairly little impact on chemistry, all of theoretical chemistry is founded upon
quantum mechanics.

The development of quantum mechanics was initially motivated by two ob-
servations which demonstrated the inadeqacy of classical physics. These are the
“ultraviolet catastrophe” and the photoelectric effect.

1.1 The Ultraviolet Catastrophe

A blackbody is an idealized object which absorbs and emits all frequencies. Clas-
sical physics can be used to derive an equation which describes the intensity of
blackbody radiation as a function of frequency for a fixed temperature—the result
is known as the Rayleigh-Jeans law. Although the Rayleigh-Jeans law works for
low frequencies, it diverges as ν2; this divergence for high frequencies is called the
ultraviolet catastrophe.

Max Planck explained the blackbody radiation in 1900 by assuming that the
energies of the oscillations of electrons which gave rise to the radiation must be
proportional to integral multiples of the frequency, i.e.,

E = nhν (1)

Using statistical mechanics, Planck derived an equation similar to the Rayleigh-
Jeans equation, but with the adjustable parameter h. Planck found that for h =
6.626×10−34 J s, the experimental data could be reproduced. Nevertheless, Planck
could not offer a good justification for his assumption of energy quantization.
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Physicicsts did not take this energy quantization idea seriously until Einstein
invoked a similar assumption to explain the photoelectric effect.

1.2 The Photoelectric Effect

In 1886 and 1887, Heinrich Hertz discovered that ultraviolet light can cause elec-
trons to be ejected from a metal surface. According to the classical wave theory
of light, the intensity of the light determines the amplitude of the wave, and so a
greater light intensity should cause the electrons on the metal to oscillate more vi-
olently and to be ejected with a greater kinetic energy. In contrast, the experiment
showed that the kinetic energy of the ejected electrons depends on the frequency

of the light. The light intensity affects only the number of ejected electrons and
not their kinetic energies.

Einstein tackled the problem of the photoelectric effect in 1905. Instead of
assuming that the electronic oscillators had energies given by Planck’s formula (1),
Einstein assumed that the radiation itself consisted of packets of energy E = hν,
which are now called photons. Einstein successfully explained the photoelectric
effect using this assumption, and he calculated a value of h close to that obtained
by Planck.

Two years later, Einstein showed that not only is light quantized, but so are
atomic vibrations. Classical physics predicts that the molar heat capacity at
constant volume (Cv) of a crystal is 3R, where R is the molar gas constant. This
works well for high temperatures, but for low temperatures Cv actually falls to
zero. Einstein was able to explain this result by assuming that the oscillations
of atoms about their equilibrium positions are quantized according to E = nhν,
Planck’s quantization condition for electronic oscillators. This demonstrated that
the energy quantization concept was important even for a system of atoms in a
crystal, which should be well-modeled by a system of masses and springs (i.e., by
classical mechanics).
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1.3 Quantization of Electronic Angular Momentum

Rutherford proposed that electrons orbit about the nucleus of an atom. One prob-
lem with this model is that, classically, orbiting electrons experience a centripetal
acceleration, and accelerating charges lose energy by radiating; a stable electronic
orbit is classically forbidden. Bohr nevertheless assumed stable electronic orbits
with the electronic angular momentum quantized as

l = mvr = nh̄ (2)

Quantization of angular momentum means that the radius of the orbit and the
energy will be quantized as well. Bohr assumed that the discrete lines seen in
the spectrum of the hydrogen atom were due to transitions of an electron from
one allowed orbit/energy to another. He further assumed that the energy for a
transition is acquired or released in the form of a photon as proposed by Einstein,
so that

∆E = hν (3)

This is known as the Bohr frequency condition. This condition, along with Bohr’s
expression for the allowed energy levels, gives a good match to the observed hy-
drogen atom spectrum. However, it works only for atoms with one electron.

1.4 Wave-Particle Duality

Einstein had shown that the momentum of a photon is

p =
h

λ
(4)

This can be easily shown as follows. Assuming E = hν for a photon and λν = c
for an electromagnetic wave, we obtain

E =
hc

λ
(5)

Now we use Einstein’s relativity result E = mc2 to find

λ =
h

mc
(6)
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which is equivalent to equation (4). Note that m refers to the relativistic mass,
not the rest mass, since the rest mass of a photon is zero. Since light can behave
both as a wave (it can be diffracted, and it has a wavelength), and as a particle
(it contains packets of energy hν), de Broglie reasoned in 1924 that matter also
can exhibit this wave-particle duality. He further reasoned that matter would
obey the same equation (4) as light. In 1927, Davisson and Germer observed
diffraction patterns by bombarding metals with electrons, confirming de Broglie’s
proposition.

de Broglie’s equation offers a justification for Bohr’s assumption (2). If we
think of an electron as a wave, then for the electron orbit to be stable the wave
must complete an integral number of wavelengths during its orbit. Otherwise, it
would interfere destructively with itself. This condition may be written as

2πr = nλ (7)

If we use the de Broglie relation (4), this can be rewritten as

mvr = nh̄ (8)

which is identical to Bohr’s equation (2).

Although de Broglie’s equation justifies Bohr’s quantization assumption, it also
demonstrates a deficiency of Bohr’s model. Heisenberg showed that the wave-
particle duality leads to the famous uncertainty principle

∆x∆p ≈ h (9)

One result of the uncertainty principle is that if the orbital radius of an electron
in an atom r is known exactly, then the angular momentum must be completely
unknown. The problem with Bohr’s model is that it specifies r exactly and it also
specifies that the orbital angular momentum must be an integral multiple of h̄.
Thus the stage was set for a new quantum theory which was consistent with the
uncertainty principle.
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2 The Schrödinger Equation

In 1925, Erwin Schrödinger and Werner Heisenberg independently developed the
new quantum theory. Schrödinger’s method involves partial differential equations,
whereas Heisenberg’s method employs matrices; however, a year later the two
methods were shown to be mathematically equivalent. Most textbooks begin with
Schrödinger’s equation, since it seems to have a better physical interpretation via
the classical wave equation. Indeed, the Schrödinger equation can be viewed as a
form of the wave equation applied to matter waves.

2.1 The Time-Independent Schrödinger Equation

Here we follow the treatment of McQuarrie [1], Section 3-1. We start with the
one-dimensional classical wave equation,

∂2u

∂x2
=

1

v2

∂2u

∂t2
(10)

By introducing the separation of variables

u(x, t) = ψ(x)f(t) (11)

we obtain

f(t)
d2ψ(x)

dx2
=

1

v2
ψ(x)

d2f(t)

dt2
(12)

If we introduce one of the standard wave equation solutions for f(t) such as eiωt

(the constant can be taken care of later in the normalization), we obtain

d2ψ(x)

dx2
=

−ω2

v2
ψ(x) (13)

Now we have an ordinary differential equation describing the spatial amplitude of
the matter wave as a function of position. The energy of a particle is the sum of
kinetic and potential parts

E =
p2

2m
+ V (x) (14)
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which can be solved for the momentum, p, to obtain

p = {2m[E − V (x)]}1/2 (15)

Now we can use the de Broglie formula (4) to get an expression for the wavelength

λ =
h

p
=

h

{2m[E − V (x)]}1/2
(16)

The term ω2/v2 in equation (13) can be rewritten in terms of λ if we recall that
ω = 2πν and νλ = v.

ω2

v2
=

4π2ν2

v2
=

4π2

λ2
=

2m[E − V (x)]

h̄2 (17)

When this result is substituted into equation (13) we obtain the famous time-

independent Schrödinger equation

d2ψ(x)

dx2
+

2m

h̄2 [E − V (x)]ψ(x) = 0 (18)

which is almost always written in the form

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (19)

This single-particle one-dimensional equation can easily be extended to the case
of three dimensions, where it becomes

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (20)

A two-body problem can also be treated by this equation if the mass m is replaced
with a reduced mass µ.

It is important to point out that this analogy with the classical wave equation
only goes so far. We cannot, for instance, derive the time-dependent Schrödinger
equation in an analogous fashion (for instance, that equation involves the partial
first derivative with respect to time instead of the partial second derivative). In
fact, Schrödinger presented his time-independent equation first, and then went
back and postulated the more general time-dependent equation.
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2.2 The Time-Dependent Schrödinger Equation

We are now ready to consider the time-dependent Schrödinger equation. Although
we were able to derive the single-particle time-independent Schrödinger equation
starting from the classical wave equation and the de Broglie relation, the time-
dependent Schrödinger equation cannot be derived using elementary methods and
is generally given as a postulate of quantum mechanics. It is possible to show
that the time-dependent equation is at least reasonable if not derivable, but the
arguments are rather involved (cf. Merzbacher [2], Section 3.2; Levine [3], Section
1.4).

The single-particle three-dimensional time-dependent Schrödinger equation is

ih̄
∂ψ(r, t)

∂t
= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) (21)

where V is assumed to be a real function and represents the potential energy of
the system (a complex function V will act as a source or sink for probability, as
shown in Merzbacher [2], problem 4.1). Wave Mechanics is the branch of quantum
mechanics with equation (21) as its dynamical law. Note that equation (21) does
not yet account for spin or relativistic effects.

Of course the time-dependent equation can be used to derive the time-independent
equation. If we write the wavefunction as a product of spatial and temporal terms,
ψ(r, t) = ψ(r)f(t), then equation (21) becomes

ψ(r)ih̄
df(t)

dt
= f(t)



− h̄2

2m
∇2 + V (r)



ψ(r) (22)

or
ih̄

f(t)

df

dt
=

1

ψ(r)



− h̄2

2m
∇2 + V (r)



ψ(r) (23)

Since the left-hand side is a function of t only and the right hand side is a function
of r only, the two sides must equal a constant. If we tentatively designate this
constant E (since the right-hand side clearly must have the dimensions of energy),
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then we extract two ordinary differential equations, namely

1

f(t)

df(t)

dt
= −iE

h̄
(24)

and

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (25)

The latter equation is once again the time-independent Schrödinger equation. The
former equation is easily solved to yield

f(t) = e−iEt/h̄ (26)

The Hamiltonian in equation (25) is a Hermitian operator, and the eigenvalues
of a Hermitian operator must be real, so E is real. This means that the solutions
f(t) are purely oscillatory, since f(t) never changes in magnitude (recall Euler’s
formula e±iθ = cosθ ± i sinθ). Thus if

ψ(r, t) = ψ(r)e−iEt/h̄ (27)

then the total wave function ψ(r, t) differs from ψ(r) only by a phase factor of
constant magnitude. There are some interesting consequences of this. First of all,
the quantity |ψ(r, t)|2 is time independent, as we can easily show:

|ψ(r, t)|2 = ψ∗(r, t)ψ(r, t) = eiEt/h̄ψ∗(r)e−iEt/h̄ψ(r) = ψ∗(r)ψ(r) (28)

Secondly, the expectation value for any time-independent operator is also time-
independent, if ψ(r, t) satisfies equation (27). By the same reasoning applied
above,

< A >=
∫

ψ∗(r, t)Âψ(r, t) =
∫

ψ∗(r)Âψ(r) (29)

For these reasons, wave functions of the form (27) are called stationary states.
The state ψ(r, t) is “stationary,” but the particle it describes is not!

Of course equation (27) represents a particular solution to equation (21). The
general solution to equation (21) will be a linear combination of these particular
solutions, i.e.

ψ(r, t) =
∑

i

cie
−iEit/h̄ψi(r) (30)
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3 Mathematical Background

3.1 Operators

Levine [3] defines an operator as “a rule that transforms a given function into
another function” (p. 33). The differentation operator d/dx is an example—
it transforms a differentiable function f(x) into another function f ′(x). Other
examples include integration, the square root, and so forth. Numbers can also be
considered as operators (they multiply a function). McQuarrie [1] gives an even
more general definition for an operator: “An operator is a symbol that tells you to
do something with whatever follows the symbol” (p. 79). Perhaps this definition
is more appropriate if we want to refer to the Ĉ3 operator acting on NH3, for
example.

3.1.1 Operators and Quantum Mechanics

In quantum mechanics, physical observables (e.g., energy, momentum, position,
etc.) are represented mathematically by operators. For instance, the operator
corresponding to energy is the Hamiltonian operator

Ĥ = −h̄
2

2

∑

i

1

mi
∇2

i + V (31)

where i is an index over all the particles of the system. We have already encoun-
tered the single-particle Hamiltonian in equation (25). The average value of an
observable A represented by an operator Â for a quantum molecular state ψ(r) is
given by the “expectation value” formula

< A >=
∫

ψ∗(r)Âψ(r)dr (32)
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3.1.2 Basic Properties of Operators

Most of the properties of operators are obvious, but they are summarized below
for completeness.

• The sum and difference of two operators Â and B̂ are given by

(Â+ B̂)f = Âf + B̂f (33)

(Â− B̂)f = Âf − B̂f (34)

• The product of two operators is defined by

ÂB̂f ≡ Â[B̂f ] (35)

• Two operators are equal if
Âf = B̂f (36)

for all functions f .

• The identity operator 1̂ does nothing (or multiplies by 1)

1̂f = f (37)

A common mathematical trick is to write this operator as a sum over a
complete set of states (more on this later).

∑

i

|i〉〈i|f = f (38)

• The associative law holds for operators

Â(B̂Ĉ) = (ÂB̂)Ĉ (39)

• The commutative law does not generally hold for operators. In general,
ÂB̂ 6= B̂Â. It is convenient to define the quantity

[Â, B̂] ≡ ÂB̂ − B̂Â (40)

which is called the commutator of Â and B̂. Note that the order matters,
so that [Â, B̂] = −[B̂, Â]. If Â and B̂ happen to commute, then [Â, B̂] = 0.
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• The n-th power of an operator Ân is defined as n successive applications of
the operator, e.g.

Â2f = ÂÂf (41)

• The exponential of an operator eÂ is defined via the power series

eÂ = 1̂ + Â+
Â2

2!
+
Â3

3!
+ · · · (42)

3.1.3 Linear Operators

Almost all operators encountered in quantum mechanics are linear operators. A
linear operator is an operator which satisfies the following two conditions:

Â(f + g) = Âf + Âg (43)

Â(cf) = cÂf (44)

where c is a constant and f and g are functions. As an example, consider the
operators d/dx and ()2. We can see that d/dx is a linear operator because

(d/dx)[f(x) + g(x)] = (d/dx)f(x) + (d/dx)g(x) (45)

(d/dx)[cf(x)] = c (d/dx)f(x) (46)

However, ()2 is not a linear operator because

(f(x) + g(x))2 6= (f(x))2 + (g(x))2 (47)

The only other category of operators relevant to quantum mechanics is the set
of antilinear operators, for which

Â(λf + µg) = λ∗Âf + µ∗Âg (48)

Time-reversal operators are antilinear (cf. Merzbacher [2], section 16-11).

14



3.1.4 Eigenfunctions and Eigenvalues

An eigenfunction of an operator Â is a function f such that the application of Â
on f gives f again, times a constant.

Âf = kf (49)

where k is a constant called the eigenvalue. It is easy to show that if Â is a linear
operator with an eigenfunction g, then any multiple of g is also an eigenfunction
of Â.

When a system is in an eigenstate of observable A (i.e., when the wavefunction
is an eigenfunction of the operator Â) then the expectation value of A is the
eigenvalue of the wavefunction. Thus if

Âψ(r) = aψ(r) (50)

then

< A > =
∫

ψ∗(r)Âψ(r)dr (51)

=
∫

ψ∗(r)aψ(r)dr

= a
∫

ψ∗(r)ψ(r)dr

= a

assuming that the wavefunction is normalized to 1, as is generally the case. In
the event that ψ(r) is not or cannot be normalized (free particle, etc.) then we
may use the formula

< A >=

∫

ψ∗(r)Âψ(r)

d
r
∫

ψ∗(r)ψ(r)dr (52)

What if the wavefunction is a combination of eigenstates? Let us assume that
we have a wavefunction which is a linear combination of two eigenstates of Â with
eigenvalues a and b.

ψ = caψa + cbψb (53)
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where Âψa = aψa and Âψb = bψb. Then what is the expectation value of A?

< A > =
∫

ψ∗Âψ (54)

=
∫

[caψa + cbψb]
∗ Â [caψa + cbψb]

=
∫

[caψa + cbψb]
∗ [acaψa + bcbψb]

= a|ca|2
∫

ψ∗
aψa + bc∗acb

∫

ψ∗
aψb + ac∗bca

∫

ψ∗
bψa + b|cb|2

∫

ψ∗
bψb

= a|ca|2 + b|cb|2

assuming that ψa and ψb are orthonormal (shortly we will show that eigenvectors
of Hermitian operators are orthogonal). Thus the average value of A is a weighted
average of eigenvalues, with the weights being the squares of the coefficients of
the eigenvectors in the overall wavefunction.

3.1.5 Hermitian Operators

As mentioned previously, the expectation value of an operator Â is given by

< A >=
∫

ψ∗(r)Âψ(r)dr (55)

and all physical observables are represented by such expectation values. Obviously,
the value of a physical observable such as energy or density must be real, so we
require < A > to be real. This means that we must have < A >=< A >∗, or

∫

ψ∗(r)Âψ(r)dr =
∫

(Âψ(r))∗ψ(r)dr (56)

Operators Â which satisfy this condition are called Hermitian. One can also show
that for a Hermitian operator,

∫

ψ∗
1(r)Âψ2(r)dr =

∫

(Âψ1(r))
∗ψ2(r)dr (57)

for any two states ψ1 and ψ2.

An important property of Hermitian operators is that their eigenvalues are
real. We can see this as follows: if we have an eigenfunction of Â with eigenvalue
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a, i.e. Âψa = aψa, then for a Hermitian operator Â
∫

ψ∗
aÂψa =

∫

ψa(Âψa)
∗ (58)

a
∫

ψ∗
aψa = a∗

∫

ψaψ
∗
a

(a− a∗)
∫

|ψa|2 = 0

Since |ψa|2 is never negative, we must have either a = a∗ or ψa = 0. Since ψa = 0
is not an acceptable wavefunction, a = a∗, so a is real.

Another important property of Hermitian operators is that their eigenvectors
are orthogonal (or can be chosen to be so). Suppose that ψa and ψb are eigen-
functions of Â with eigenvalues a and b, with a 6= b. If Â is Hermitian then

∫

ψ∗
aÂψb =

∫

ψb(Âψa)
∗ (59)

b
∫

ψ∗
aψb = a∗

∫

ψbψ
∗
a

(b− a)
∫

ψ∗
aψb = 0

since a = a∗ as shown above. Because we assumed b 6= a, we must have
∫

ψ∗
aψb =

0, i.e. ψa and ψb are orthogonal. Thus we have shown that eigenfunctions of
a Hermitian operator with different eigenvalues are orthogonal. In the case of
degeneracy (more than one eigenfunction with the same eigenvalue), we can choose

the eigenfunctions to be orthogonal. We can easily show this for the case of two
eigenfunctions of Â with the same eigenvalue. Suppose we have

Âψj = jψj (60)

Âψk = jψk

We now want to take linear combinations of ψj and ψk to form two new eigen-
functions ψj′ and ψk′, where ψj′ = ψj and ψk′ = ψk + cψj. Now we want ψj′ and
ψk′ to be orthogonal, so

∫

ψ∗
j′ψk′ = 0 (61)

∫

ψ∗
j (ψk + cψj) = 0

∫

ψ∗
jψk + c

∫

ψ∗
jψj = 0
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Thus we merely need to choose

c = −
∫

ψ∗
jψk

∫

ψ∗
jψj

(62)

and we obtain orthogonal eigenfunctions. This Schmidt-orthogonalization proce-
dure can be extended to the case of n-fold degeneracy, so we have shown that for
a Hermitian operator, the eigenvectors can be made orthogonal.

3.1.6 Unitary Operators

A linear operator whose inverse is its adjoint is called unitary. These operators
can be thought of as generalizations of complex numbers whose absolue value is
1.

U−1 = U † (63)

UU † = U †U = I

A unitary operator preserves the “lengths” and “angles” between vectors, and it
can be considered as a type of rotation operator in abstract vector space. Like
Hermitian operators, the eigenvectors of a unitary matrix are orthogonal. How-
ever, its eigenvalues are not necessarily real.

3.2 Commutators in Quantum Mechanics

The commutator, defined in section 3.1.2, is very important in quantum mechanics.
Since a definite value of observable A can be assigned to a system only if the system
is in an eigenstate of Â, then we can simultaneously assign definite values to two
observables A and B only if the system is in an eigenstate of both Â and B̂.
Suppose the system has a value of Ai for observable A and Bj for observable B.
The we require

ÂψAi,Bj
= AiψAi,Bj

(64)

B̂ψAi,Bj
= BjψAi,Bj

18



If we multiply the first equation by B̂ and the second by Â then we obtain

B̂ÂψAi,Bj
= B̂AiψAi,Bj

(65)

ÂB̂ψAi,Bj
= ÂBjψAi,Bj

and, using the fact that ψAi,Bj
is an eigenfunction of Â and B̂, this becomes

B̂ÂψAi,Bj
= AiBjψAi,Bj

(66)

ÂB̂ψAi,Bj
= BjAiψAi,Bj

so that if we subtract the first equation from the second, we obtain

(ÂB̂ − B̂Â)ψAi,Bj
= 0 (67)

For this to hold for general eigenfunctions, we must have ÂB̂ = B̂Â, or [Â, B̂] = 0.
That is, for two physical quantities to be simultaneously observable, their operator
representations must commute.

Section 8.8 of Merzbacher [2] contains some useful rules for evaluating commu-
tators. They are summarized below.

[Â, B̂] + [B̂, Â] = 0 (68)

[Â, Â] = 0 (69)

[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] (70)

[Â+ B̂, Ĉ] = [Â, Ĉ] + [B̂, Ĉ] (71)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (72)

[ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ] (73)

[Â, [B̂, Ĉ]] + [Ĉ, [Â, B̂]] + [B̂, [Ĉ, Â]] = 0 (74)

If Â and B̂ are two operators which commute with their commutator, then

[Â, B̂n] = nB̂n−1[Â, B̂] (75)

[Ân, B̂] = nÂn−1[Â, B̂] (76)
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We also have the identity (useful for coupled-cluster theory)

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + · · · (77)

Finally, if [Â, B̂] = iĈ then the uncertainties in A and B, defined as ∆A2 =<
A2 > − < A >2, obey the relation1

(∆A)(∆B) ≥ 1

2
| < C > | (78)

This is the famous Heisenberg uncertainty principle. It is easy to derive the well-
known relation

(∆x)(∆px) ≥
h̄

2
(79)

from this generalized rule.

3.3 Linear Vector Spaces in Quantum Mechanics

We have observed that most operators in quantum mechanics are linear operators.
This is fortunate because it allows us to represent quantum mechanical operators
as matrices and wavefunctions as vectors in some linear vector space. Since com-
puters are particularly good at performing operations common in linear algebra
(multiplication of a matrix times a vector, etc.), this is quite advantageous from
a practical standpoint.

In an n-dimensional space we may expand any vector Ψ as a linear combination
of basis vectors

Ψ =
n
∑

i=1

aiΨi (80)

For a general vector space, the coefficients ai may be complex; thus one should not
be too quick to draw parallels to the expansion of vectors in three-dimensional Eu-
clidean space. The coefficients ai are referred to as the “components” of the state
vector Ψ, and for a given basis, the components of a vector specify it completely.

1Assuming that the quantum covariance < (ÂB̂ + B̂Â)/2− < Â >< B̂ >> is zero.

20



The components of the sum of two vectors are the sums of the components. If
Ψa =

∑

aiΨi and Ψb =
∑

biΨi then

Ψa + Ψb =
∑

i

(ai + bi)Ψi (81)

and similarly
λΨa =

∑

i

(λai)Ψi (82)

The scalar product of two vectors is a complex number denoted by

(Ψb,Ψa) = (Ψa,Ψb)
∗ (83)

where we have used the standard linear-algebra notation. If we also require that

(Ψa, λΨb) = λ(Ψa,Ψb) (84)

then it follows that
(λΨa,Ψb) = λ∗(Ψa,Ψb) (85)

We also require that

(Ψa,Ψb + Ψc) = (Ψa,Ψb) + (Ψa,Ψc) (86)

If the scalar product vanishes (and if neither vector in the product is the null
vector) then the two vectors are orthogonal.

Generally the basis is chosen to be orthonormal, such that

(Ψ̂i, Ψ̂j) = δij (87)

In this case, we can write the scalar product of two arbitrary vectors as

(Ψa,Ψb) = (
∑

i

aiΨ̂i,
∑

j

bjΨ̂j) (88)

=
∑

i

∑

j

a∗i bj(Ψ̂i, Ψ̂j)

=
∑

i

a∗i bi
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This can also be written in vector notation as

(Ψa,Ψb) = (a∗1a
∗
2 · · · a∗n)

















b1
b2
...
bn

















(89)

It is useful at this point to introduce Dirac’s bra-ket notation. We define a “bra”
as

〈Ψa| = (a∗1a
∗
2 · · · a∗n) (90)

and a “ket” as

|Ψa〉 =

















a1

a2
...
an

















(91)

A bra to the left of a ket implies a scalar product, so

〈Ψa|Ψb〉 = (Ψa,Ψb) (92)

Sometimes in superficial treatments of Dirac notation, the symbol 〈Ψa|Ψb〉 is
defined alternatively as

〈Ψa|Ψb〉 =
∫

Ψ∗
a(x)Ψb(x)dx (93)

This is equivalent to the above definition if we make the connections ai = Ψa(x)
and bi = Ψb(x). This means that our basis vectors are every possible value of x.
Since x is continuous, the sum is replaced by an integral (see Szabo and Ostlund
[4] , exercise 1.17). Often only the subscript of the vector is used to denote a bra
or ket; we may have written the above equation as

〈a|b〉 =
∫

Ψ∗
a(x)Ψb(x)dx (94)

Now we turn our attention to matrix representations of operators. An operator
Â can be characterized by its effect on the basis vectors. The action of Â on a
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basis vector Ψ̂j yields some new vector Ψ′
j which can be expanded in terms of the

basis vectors so long as we have a complete basis set.

ÂΨ̂j = Ψ′
j =

n
∑

i

Ψ̂iAij (95)

If we know the effect of Â on the basis vectors, then we know the effect of Â on
any arbitrary vector because of the linearity of Â.

Ψb = ÂΨa = Â
∑

j

ajΨ̂j =
∑

j

ajÂΨ̂j =
∑

j

∑

i

ajΨ̂iAij (96)

=
∑

i

Ψ̂i(
∑

j

Aijaj)

or
bi =

∑

j

Aijaj (97)

This may be written in matrix notation as
















b1
b2
...
bn

















=

















A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann

































a1

a2
...
an

















(98)

We can obtain the coefficients Aij by taking the inner product of both sides of
equation 95 with Ψ̂i, yielding

(Ψ̂i, ÂΨ̂j) = (Ψ̂i,
n
∑

k

Ψ̂kAkj) (99)

=
n
∑

k

Akj(Ψ̂i, Ψ̂k)

= Aij

since (Ψ̂i, Ψ̂k) = δik due to the orthonormality of the basis. In bra-ket notation,
we may write

Aij = 〈i|Â|j〉 (100)
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where i and j denote two basis vectors. This use of bra-ket notation is consistent
with its earlier use if we realize that Â|j〉 is just another vector |j ′〉.

It is easy to show that for a linear operator Â, the inner product (Ψa, ÂΨb) for
two general vectors (not necessarily basis vectors) Ψa and Ψb is given by

(Ψa, ÂΨb) =
∑

i

∑

j

a∗iAijbj (101)

or in matrix notation

(Ψa, ÂΨb) = (a∗1a
∗
2 · · · a∗n)

















A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann

































b1
b2
...
bn

















(102)

By analogy to equation (93), we may generally write this inner product in the
form

(Ψa, ÂΨb) = 〈a|Â|b〉 =
∫

Ψ∗
a(x)ÂΨb(x)dx (103)

Previously, we noted that (Ψa,Ψb) = (Ψb,Ψa)
∗, or 〈a|b〉 = 〈b|a〉∗. Thus we can

see also that
(Ψa, ÂΨb) = (ÂΨb,Ψa)

∗ (104)

We now define the adjoint of an operator Â, denoted by Â†, as that linear operator
for which

(Ψa, ÂΨb) = (Â†Ψa,Ψb) (105)

That is, we can make an operator act backwards into “bra” space if we take it’s
adjoint. With this definition, we can further see that

(Ψa, ÂΨb) = (ÂΨb,Ψa)
∗ = (Ψb, Â

†Ψa)
∗ = (Â†Ψa,Ψb) (106)

or, in bra-ket notation,

〈a|Â|b〉 = 〈Âb|a〉∗ = 〈b|Â†|a〉∗ = 〈Â†a|b〉 (107)
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If we pick Ψa = Ψ̂i and Ψb = Ψ̂j (i.e., if we pick two basis vectors), then we obtain

(ÂΨ̂i, Ψ̂j) = (Ψ̂i, Â
†Ψ̂j) (108)

(Ψ̂j, ÂΨ̂i)
∗ = (Ψ̂i, Â

†Ψ̂j)

A∗
ji = A†

ij

But this is precisely the condition for the elements of a matrix and its adjoint!
Thus the adjoint of the matrix representation of Â is the same as the matrix
representation of Â†.

This correspondence between operators and their matrix representations goes
quite far, although of course the specific matrix representation depends on the
choice of basis. For instance, we know from linear algebra that if a matrix and
its adjoint are the same, then the matrix is called Hermitian. The same is true of
the operators; if

Â = Â† (109)

then Â is a Hermitian operator, and all of the special properties of Hermitian
operators apply to Â or its matrix representation.
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4 Postulates of Quantum Mechanics

In this section, we will present six postulates of quantum mechanics. Again, we
follow the presentation of McQuarrie [1], with the exception of postulate 6, which
McQuarrie does not include. A few of the postulates have already been discussed
in section 3.

Postulate 1. The state of a quantum mechanical system is com-
pletely specified by a function Ψ(r, t) that depends on the coordinates
of the particle(s) and on time. This function, called the wave function
or state function, has the important property that Ψ∗(r, t)Ψ(r, t)dτ is
the probability that the particle lies in the volume element dτ located
at r at time t.

The wavefunction must satisfy certain mathematical conditions because of this
probabilistic interpretation. For the case of a single particle, the probability of
finding it somewhere is 1, so that we have the normalization condition

∫ ∞

−∞
Ψ∗(r, t)Ψ(r, t)dτ = 1 (110)

It is customary to also normalize many-particle wavefunctions to 1.2 The wave-
function must also be single-valued, continuous, and finite.

Postulate 2. To every observable in classical mechanics there cor-
responds a linear, Hermitian operator in quantum mechanics.

This postulate comes about because of the considerations raised in section 3.1.5:
if we require that the expectation value of an operator Â is real, then Â must be
a Hermitian operator. Some common operators occuring in quantum mechanics
are collected in Table 1.

2In some cases, such as the free-particle, one must use special tricks to normalize the wavefunction. See
Merzbacher [2], section 8.1.
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Table 1: Physical observables and their corresponding quantum operators (single particle)

Observable Observable Operator Operator
Name Symbol Symbol Operation
Position r r̂ Multiply by r

Momentum p p̂ −ih̄
(

î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

)

Kinetic energy T T̂ − h̄2

2m

(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

Potential energy V (r) V̂ (r) Multiply by V (r)

Total energy E Ĥ − h̄2

2m

(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

+ V (r)

Angular momentum lx l̂x −ih̄
(

y ∂
∂z

− z ∂
∂y

)

ly l̂y −ih̄
(

z ∂
∂x

− x ∂
∂z

)

lz l̂z −ih̄
(

x ∂
∂y

− y ∂
∂x

)

Postulate 3. In any measurement of the observable associated with
operator Â, the only values that will ever be observed are the eigenvalues
a, which satisfy the eigenvalue equation

ÂΨ = aΨ (111)

This postulate captures the central point of quantum mechanics—the values of
dynamical variables can be quantized (although it is still possible to have a contin-
uum of eigenvalues in the case of unbound states). If the system is in an eigenstate
of Â with eigenvalue a, then any measurement of the quantity A will yield a.

Although measurements must always yield an eigenvalue, the state does not
have to be an eigenstate of Â initially. An arbitrary state can be expanded in the
complete set of eigenvectors of Â (ÂΨi = aiΨi) as

Ψ =
n
∑

i

ciΨi (112)

where n may go to infinity. In this case we only know that the measurement of
A will yield one of the values ai, but we don’t know which one. However, we do
know the probability that eigenvalue ai will occur—it is the absolute value squared
of the coefficient, |ci|2 (cf. section 3.1.4), leading to the fourth postulate below.
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An important second half of the third postulate is that, after measurement of
Ψ yields some eigenvalue ai, the wavefunction immediately “collapses” into the
corresponding eigenstate Ψi (in the case that ai is degenerate, then Ψ becomes
the projection of Ψ onto the degenerate subspace). Thus, measurement affects
the state of the system. This fact is used in many elaborate experimental tests of
quantum mechanics.

Postulate 4. If a system is in a state described by a normalized wave
function Ψ, then the average value of the observable corresponding to Â
is given by

< A >=
∫ ∞

−∞
Ψ∗ÂΨdτ (113)

Postulate 5. The wavefunction or state function of a system evolves
in time according to the time-dependent Schrödinger equation

ĤΨ(r, t) = ih̄
∂Ψ

∂t
(114)

The central equation of quantum mechanics must be accepted as a postulate, as
discussed in section 2.2.

Postulate 6. The total wavefunction must be antisymmetric with
respect to the interchange of all coordinates of one fermion with those
of another. Electronic spin must be included in this set of coordinates.

The Pauli exclusion principle is a direct result of this antisymmetry principle. We
will later see that Slater determinants provide a convenient means of enforcing
this property on electronic wavefunctions.
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5 Some Analytically Soluble Problems

Quantum chemists are generally concerned with solving the time-independent
Schrödinger equation (25). This equation can be solved analytically only in a few
special cases. In this section we review the results of some of these analytically
soluble problems.

5.1 The Particle in a Box

Consider a particle constrained to move in a single dimension, under the influence
of a potential V (x) which is zero for 0 ≤ x ≤ a and infinite elsewhere. Since the
wavefunction is not allowed to become infinite, it must have a value of zero where
V (x) is infinite, so ψ(x) is nonzero only within [0, a]. The Schrödinger equation
is thus

− h̄2

2m

d2ψ

dx2
= Eψ(x) 0 ≤ x ≤ a (115)

It is easy to show that the eigenvectors and eigenvalues of this problem are

ψn(x) =

√

√

√

√

2

a
sin

(

nπx

a

)

0 ≤ x ≤ a n = 1, 2, 3, . . . (116)

En =
h2n2

8ma2
n = 1, 2, . . . (117)

Extending the problem to three dimensions is rather straightforward; see McQuar-
rie [1], section 6.1.

5.2 The Harmonic Oscillator

Now consider a particle subject to a restoring force F = −kx, as might arise for
a mass-spring system obeying Hooke’s Law. The potential is then

V (x) = −
∫ ∞

−∞
(−kx)dx (118)

= V0 +
1

2
kx2
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If we choose the energy scale such that V0 = 0 then V (x) = (1/2)kx2. This
potential is also appropriate for describing the interaction of two masses connected
by an ideal spring. In this case, we let x be the distance between the masses, and
for the mass m we substitute the reduced mass µ. Thus the harmonic oscillator is
the simplest model for the vibrational motion of the atoms in a diatomic molecule,
if we consider the two atoms as point masses and the bond between them as a
spring. The one-dimensional Schrödinger equation becomes

− h̄2

2µ

d2ψ

dx2
+

1

2
kx2ψ(x) = Eψ(x) (119)

After some effort, the eigenfunctions are

ψn(x) = NnHn(α
1/2x)e−αx2/2 n = 0, 1, 2, . . . (120)

where Hn is the Hermite polynomial of degree n, and α and Nn are defined by

α =

√

√

√

√

kµ

h̄2 Nn =
1√
2nn!

(

α

π

)1/4

(121)

The eigenvalues are
En = h̄ω(n+ 1/2) (122)

with ω =
√

k/µ.

5.3 The Rigid Rotor

The rigid rotor is a simple model of a rotating diatomic molecule. We consider
the diatomic to consist of two point masses at a fixed internuclear distance. We
then reduce the model to a one-dimensional system by considering the rigid rotor
to have one mass fixed at the origin, which is orbited by the reduced mass µ, at a
distance r. The Schrödinger equation is (cf. McQuarrie [1], section 6.4 for a clear
explanation)

− h̄
2

2I





1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2



ψ(r) = Eψ(r) (123)
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After a little effort, the eigenfunctions can be shown to be the spherical harmonics
Y M

J (θ, φ), defined by

Y M
J (θ, φ) =





(2J + 1)

4π

(J − |M |)!
(J + |M |)!





1/2

P
|M |
J (cosθ)eiMφ (124)

where P
|M |
J (x) are the associated Legendre functions. The eigenvalues are simply

EJ =
h̄2

2I
J(J + 1) (125)

Each energy level EJ is 2J + 1-fold degenerate in M , since M can have values
−J,−J + 1, . . . , J − 1, J .

5.4 The Hydrogen Atom

Finally, consider the hydrogen atom as a proton fixed at the origin, orbited by an
electron of reduced mass µ. The potential due to electrostatic attraction is

V (r) = − e2

4πε0r
(126)

in SI units. The kinetic energy term in the Hamiltonian is

T̂ = − h̄2

2µ
∇2 (127)

so we write out the Schrödinger equation in spherical polar coordinates as

− h̄2

2µ





1

r2

∂

∂r

(

r2∂ψ

∂r

)

1

r2sinθ

∂

∂θ

(

sinθ
∂ψ

∂θ

)

+
1

r2sin2θ

∂2ψ

∂φ2



− e2

4πε0r
ψ(r, θ, φ) = Eψ(r, θ, φ)

(128)
It happens that we can factor ψ(r, θ, φ) into R(r)nlY

m
l (θ, φ), where Y m

l (θ, φ) are
again the spherical harmonics. The radial part R(r) then can be shown to obey
the equation

− h̄2

2µr2

d

dr

(

r2dR

dr

)

+





h̄2l(l + 1)

2µr2
+ V (r) − E



R(r) = 0 (129)
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which is called the radial equation for the hydrogen atom. Its (messy) solutions
are

Rnl(r) = −




(n− l − 1)!

2n[(n+ l)!]3





1/2 (
2

na0

)l+3/2

rle−r/na0L2l+1
n+l

(

2r

na0

)

(130)

where 0 ≤ l ≤ n − 1, and a0 is the Bohr radius, ε0h
2/πµe2. The functions

L2l+1
n+l (2r/na0) are the associated Laguerre functions. The hydrogen atom eigen-

values are

En = − e2

8πε0a0n2
n = 1, 2, . . . (131)

There are relatively few other interesting problems that can be solved analyti-
cally. For molecular systems, one must resort to approximate solutions.
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6 Approximate Methods

The problems discussed in the previous section (harmonic oscillator, rigid rota-
tor, etc.) are some of the few quantum mechanics problems which can be solved
analytically. For the vast majority of chemical applications, the Schrödinger equa-
tion must be solved by approximate methods. The two primary approximation
techniques are the variational method and perturbation theory.

6.1 Perturbation Theory

The basic idea of perturbation theory is very simple: we split the Hamiltonian into
a piece we know how to solve (the “reference” or “unperturbed” Hamiltonian) and
a piece we don’t know how to solve (the “perturbation”). As long as the perbur-
bation is small compared to the unperturbed Hamiltonian, perturbation theory
tells us how to correct the solutions to the unperturbed problem to approximately
account for the influence of the perturbation. For example, perturbation theory
can be used to approximately solve an anharmonic oscillator problem with the
Hamiltonian

Ĥ = − h̄2

2µ

d2

dx2
+

1

2
kx2 +

1

6
γx3. (132)

Here, since we know how to solve the harmonic oscillator problem (see 5.2), we
make that part the unperturbed Hamiltonian (denoted Ĥ(0)), and the new, an-
harmonic term is the perturbation (denoted Ĥ(1)):

Ĥ(0) = − h̄2

2µ

d2

dx2
+

1

2
kx2, (133)

Ĥ(1) = +
1

6
γx3. (134)

Perturbation theory solves such a problem in two steps. First, obtain the eigen-
functions and eigenvalues of the unperturbed Hamiltonian, Ĥ(0):

Ĥ(0)Ψ(0)
n = E(0)

n Ψ(0)
n . (135)
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Second, correct these eigenvalues and/or eigenfunctions to account for the pertur-
bation’s influence. Perturbation theory gives these corrections as an infinite series
of terms, which become smaller and smaller for well-behaved systems:

En = E(0)
n + E(1)

n + E(2)
n + · · · (136)

Ψn = Ψ(0)
n + Ψ(1)

n + Ψ(2)
n + · · · (137)

Quite frequently, the corrections are only taken through first or second order
(i.e., superscripts (1) or (2)). According to perturbation theory, the first-order
correction to the energy is

E(1)
n =

∫

Ψ(0)∗
n Ĥ(1)Ψ(0)

n , (138)

and the second-order correction is

E(2)
n =

∫

Ψ(0)∗
n Ĥ(1)Ψ(1)

n . (139)

One can see that the first-order correction to the wavefunction, Ψ(1)
n , seems to be

needed to compute the second-order energy correction. However, it turns out that
the correction Ψ(1)

n can be written in terms of the zeroth-order wavefunction as

Ψ(1)
n =

∑

i6=n

Ψ
(0)
i

∫

Ψ
(0)∗
i Ĥ(1)Ψ(0)

n

E
(0)
n − E

(0)
i

. (140)

Substituting this in the expression for E(2)
n , we obtain

E(2)
n =

∑

i6=n

| ∫ Ψ(0)∗
n Ĥ(1)Ψ

(0)
i |2

E
(0)
n − E

(0)
i

. (141)

Going back to the anharmonic oscillator example, the ground state wavefunc-
tion for the unperturbed problem is just (from section 5.2)

E
(0)
0 =

1

2
h̄ω, (142)

Ψ
(0)
0 (x) = N0H0(α

1/2x)e−αx2/2 (143)

=

(

α

π

)1/4

e−αx2/2. (144)
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The first-order correction to the ground state energy would be

E
(1)
0 =

(

α

π

)1/2 ∫ ∞

−∞
1

6
γx3e−αx2

dx. (145)

It turns out in this case that E
(1)
0 = 0, since the integrand is odd. Does

this mean that the anharmonic energy levels are the same as for the harmonic
oscillator? No, because there are higher-order corrections such as E

(2)
0 which are

not necessarily zero.

6.2 The Variational Method

The variational method is the other main approximate method used in quantum
mechanics. Compared to perturbation theory, the variational method can be more
robust in situations where it’s hard to determine a good unperturbed Hamilto-
nian (i.e., one which makes the perturbation small but is still solvable). On the
other hand, in cases where there is a good unperturbed Hamiltonian, perturbation
theory can be more efficient than the variational method.

The basic idea of the variational method is to guess a “trial” wavefunction
for the problem, which consists of some adjustable parameters called “variational
parameters.” These parameters are adjusted until the energy of the trial wavefunc-
tion is minimized. The resulting trial wavefunction and its corresponding energy
are variational method approximations to the exact wavefunction and energy.

Why would it make sense that the best approximate trial wavefunction is the
one with the lowest energy? This results from the Variational Theorem, which
states that the energy of any trial wavefunction E is always an upper bound
to the exact ground state energy E0. This can be proven easily. Let the trial
wavefunction be denoted Φ. Any trial function can formally be expanded as a
linear combination of the exact eigenfunctions Ψi. Of course, in practice, we don’t
know the Ψi, since we’re assuming that we’re applying the variational method to
a problem we can’t solve analytically. Nevertheless, that doesn’t prevent us from
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using the exact eigenfunctions in our proof, since they certainly exist and form a
complete set, even if we don’t happen to know them. So, the trial wavefunction
can be written

Φ =
∑

i

ciΨi, (146)

and the approximate energy corresponding to this wavefunction is

E[Φ] =

∫

Φ∗ĤΦ
∫

Φ∗Φ
. (147)

Substituting the expansion over the exact wavefuntions,

E[Φ] =

∑

ij c
∗
i cj

∫

Ψ∗
i ĤΨj

∑

ij c∗i cj
∫

Ψ∗
i Ψj

. (148)

Since the functions Ψj are the exact eigenfunctions of Ĥ, we can use ĤΨj = EjΨj

to obtain

E[Φ] =

∑

ij c
∗
i cjEj

∫

Ψ∗
i Ψj

∑

ij c∗i cj
∫

Ψ∗
i Ψj

. (149)

Now using the fact that eigenfunctions of a Hermitian operator form an orthonor-
mal set (or can be made to do so),

E[Φ] =

∑

i c
∗
i ciEi

∑

i c∗i ci
. (150)

We now subtract the exact ground state energy E0 from both sides to obtain

E[Φ] − E0 =

∑

i c
∗
i ci(Ei − E0)
∑

i c∗i ci
. (151)

Since every term on the right-hand side is greater than or equal to zero, the
left-hand side must also be greater than or equal to zero, or

E[Φ] ≥ E0. (152)

In other words, the energy of any approximate wavefunction is always greater than
or equal to the exact ground state energy E0. This explains the strategy of the
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variational method: since the energy of any approximate trial function is always
above the true energy, then any variations in the trial function which lower its
energy are necessarily making the approximate energy closer to the exact answer.
(The trial wavefunction is also a better approximation to the true ground state
wavefunction as the energy is lowered, although not necessarily in every possible
sense unless the limit Φ = Ψ0 is reached).

One example of the variational method would be using the Gaussian function
φ(r) = e−αr2

as a trial function for the hydrogen atom ground state. This problem
could be solved by the variational method by obtaining the energy of φ(r) as a
function of the variational parameter α, and then minimizing E(α) to find the
optimum value αmin. The variational theorem’s approximate wavefunction and
energy for the hydrogen atom would then be φ(r) = e−αminr2

and E(αmin).

Frequently, the trial function is written as a linear combination of basis func-
tions, such as

Φ =
∑

i

ciφi. (153)

This leads to the linear variation method, and the variational parameters are the
expansion coefficients ci. The energy for this approximate wavefunction is just

E[Φ] =

∑

ij c
∗
i cj

∫

φ∗i Ĥφj
∑

ij c∗i cj
∫

φ∗iφj
, (154)

which can be simplified using the notation

Hij =
∫

φ∗i Ĥφj, (155)

Sij =
∫

φ∗iφj, (156)

to yield

E[Φ] =

∑

ij c
∗
i cjHij

∑

ij c∗i cjSij
. (157)

Differentiating this energy with respect to the expansion coefficients ci yields a

37



non-trivial solution only if the following “secular determinant” equals 0.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − ES11 H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − ES22 · · · H2N − ES2N
...

...
...

...
HN1 − ESN1 HN2 − ESN2 · · · HNN − ESNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (158)

If an orthonormal basis is used, the secular equation is greatly simplified because
Sij is 1 for i = j and 0 for i 6= j. In this case, the secular determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − E H12 · · · H1N

H21 H22 − E · · · H2N
...

...
...

...
HN1 HN2 · · · HNN − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (159)

In either case, the secular determinant for N basis functions gives an N -th order
polynomial in E which is solved for N different roots, each of which approximates
a different eigenvalue.

The variational method lies behind Hartree-Fock theory and the configuration
interaction method for the electronic structure of atoms and molecules.
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7 Molecular Quantum Mechanics

In this section, we discuss the quantum mechanics of atomic and molecular sys-
tems. We begin by writing the Hamiltonian for a collection of nuclei and electrons,
and then we introduce the Born-Oppenheimer approximation, which allows us to
separate the nuclear and electronic degrees of freedom.

7.1 The Molecular Hamiltonian

We have noted before that the kinetic energy for a system of particles is

T̂ = −h̄
2

2

∑

i

1

mi
∇2 (160)

The potential energy for a system of charged particles is

V̂ (r) =
∑

i>j

ZiZje
2

4πε0

1

|ri − rj|
(161)

For a molecule, it is reasonable to split the kinetic energy into two summations—
one over electrons, and one over nuclei. Similarly, we can split the potential
energy into terms representing interactions between nuclei, between electrons, or
between electrons and nuclei. Using i and j to index electrons, and A and B to
index nuclei, we have (in atomic units)

Ĥ = −∑

A

1

2MA
∇2

A −∑

i

1

2
∇2

i +
∑

A>B

ZAZB

RAB
−∑

Ai

ZA

rAi
+
∑

i>j

1

rij
(162)

where rij = |ri − rj|, RAi = |rA − ri|, and RAB = |rA − rB|. This is known as the
“exact” nonrelativistic Hamiltonian in field-free space. However, it is important
to remember that this Hamiltonian neglects at least two effects. Firstly, although
the speed of an electron in a hydrogen atom is less than 1% of the speed of light,
relativistic mass corrections can become appreciable for the inner electrons of
heavier atoms. Secondly, we have neglected the spin-orbit effects. From the point
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of view of an electron, it is being orbited by a nucleus which produces a magnetic
field (proportional to L); this field interacts with the electron’s magnetic moment
(proportional to S), giving rise to a spin-orbit interaction (proportional to L · S
for a diatomic.) Although spin-orbit effects can be important, they are generally
neglected in quantum chemical calculations.

7.2 The Born-Oppenheimer Approximation

We know that if a Hamiltonian is separable into two or more terms, then the
total eigenfunctions are products of the individual eigenfunctions of the separated
Hamiltonian terms, and the total eigenvalues are sums of individual eigenvalues
of the separated Hamiltonian terms.

Consider, for example, a Hamiltonian which is separable into two terms, one
involving coordinate q1 and the other involving coordinate q2.

Ĥ = Ĥ1(q1) + Ĥ2(q2) (163)

with the overall Schrödinger equation being

Ĥψ(q1, q2) = Eψ(q1, q2) (164)

If we assume that the total wavefunction can be written in the form ψ(q1, q2) =
ψ1(q1)ψ2(q2), where ψ1(q1) and ψ2(q2) are eigenfunctions of Ĥ1 and Ĥ2 with eigen-
values E1 and E2, then

Ĥψ(q1, q2) = (Ĥ1 + Ĥ2)ψ1(q1)ψ2(q2) (165)

= Ĥ1ψ1(q1)ψ2(q2) + Ĥ2ψ1(q1)ψ2(q2)

= E1ψ1(q1)ψ2(q2) + E2ψ1(q1)ψ2(q2)

= (E1 + E2)ψ1(q1)ψ2(q2)

= Eψ(q1, q2)

Thus the eigenfunctions of Ĥ are products of the eigenfunctions of Ĥ1 and Ĥ2,
and the eigenvalues are the sums of eigenvalues of Ĥ1 and Ĥ2.
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If we examine the nonrelativistic Hamiltonian (162), we see that the term

∑

Ai

ZA

rAi
(166)

prevents us from cleanly separating the electronic and nuclear coordinates and
writing the total wavefunction as ψ(r,R) = ψe(r)ψN(R), where r represents the
set of all electronic coordinates, and R represents the set of all nuclear coordi-
nates. The Born-Oppenheimer approximation is to assume that this separation
is nevertheless approximately correct.

Qualitatively, the Born-Oppenheimer approximation rests on the fact that the
nuclei are much more massive than the electrons. This allows us to say that
the nuclei are nearly fixed with respect to electron motion. We can fix R, the
nuclear configuration, at some value Ra, and solve for ψe(r;Ra); the electronic
wavefunction depends only parametrically on R. If we do this for a range of R,
we obtain the potential energy curve along which the nuclei move.

We now show the mathematical details. Let us abbreviate the molecular Hamil-
tonian as

Ĥ = T̂N(R) + T̂e(r) + V̂NN(R) + V̂eN(r,R) + V̂ee(r) (167)

where the meaning of the individual terms should be obvious. Initially, T̂N(R)
can be neglected since T̂N is smaller than T̂e by a factor of MA/me, where me is
the mass of an electron. Thus for a fixed nuclear configuration, we have

Ĥel = T̂e(r) + V̂eN(r;R) + V̂NN(R) + V̂ee(r) (168)

such that
Ĥelφe(r;R) = Eelφe(r;R) (169)

This is the “clamped-nuclei” Schrödinger equation. Quite frequently V̂NN(R) is
neglected in the above equation, which is justified since in this case R is just
a parameter so that V̂NN(R) is just a constant and shifts the eigenvalues only
by some constant amount. Leaving V̂NN(R) out of the electronic Schrödinger
equation leads to a similar equation,

Ĥe = T̂e(r) + V̂eN(r;R) + V̂ee(r) (170)
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Ĥeφe(r;R) = Eeφe(r;R) (171)

where we have used a new subscript “e” on the electronic Hamiltonian and energy
to distinguish from the case where V̂NN is included.

We now consider again the original Hamiltonian (167). If we insert a wave-
function of the form φT (r,R) = φe(r;R)φN(R), we obtain

Ĥφe(r;R)φN(R) = Etotφe(r;R)φN(R) (172)

{T̂N(R)+T̂e(r)+V̂eN(r,R)+V̂NN(R)+V̂ee(r)}φe(r;R)φN(R) = Etotφe(r;R)φN(R)
(173)

Since T̂e contains no R dependence,

T̂eφe(r;R)φN(R) = φN(R)T̂eφe(r;R) (174)

However, we may not immediately assume

T̂Nφe(r;R)φN(R) = φe(r;R)T̂NφN(R) (175)

(this point is tacitly assumed by most introductory textbooks). By the chain rule,

∇2
Aφe(r;R)φN(R) = φe(r;R)∇2

AφN(R)+2∇Aφe(r;R)∇AφN(R)+φN(R)∇2
Aφe(r;R)

(176)
Using these facts, along with the electronic Schrödinger equation,

{T̂e + V̂eN(r;R) + V̂ee(r)}φe(r;R) = Ĥeφe(r;R) = Eeφe(r;R) (177)

we simplify (173) to

φe(r;R)T̂NφN(R) + φN(R)φe(r;R)(Ee + V̂NN) (178)

−






∑

A

1

2MA
(2∇Aφe(r;R)∇AφN(R) + φN(R)∇2

Aφe(r;R))







= Etotφe(r;R)φN(R)

We must now estimate the magnitude of the last term in brackets. Follow-
ing Steinfeld [5], a typical contribution has the form 1/(2MA)∇2

Aφe(r;R), but
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∇Aφe(r;R) is of the same order as ∇iφe(r;R) since the derivatives operate over
approximately the same dimensions. The latter is φe(r;R)pe, with pe the momen-
tum of an electron. Therefore 1/(2MA)∇2

Aφe(r;R) ≈ p2
e/(2MA) = (m/MA)Ee.

Since m/MA ∼ 1/10000, the term in brackets can be dropped, giving

φe(r;R)T̂NφN(R) + φN(R)Eeφe(r;R) + φN(R)V̂NNφe(r;R) = Etotφe(r;R)φN(R)
(179)

{T̂N + Ee + V̂NN}φN(R) = EtotφN(R) (180)

This is the nuclear Shrodinger equation we anticipated—the nuclei move in a
potential set up by the electrons.

To summarize, the large difference in the relative masses of the electrons and
nuclei allows us to approximately separate the wavefunction as a product of nu-
clear and electronic terms. The electronic wavefucntion φe(r;R) is solved for a
given set of nuclear coordinates,

Ĥeφe(r;R) =







−1

2

∑

i

∇2
i −

∑

A,i

ZA

rAi
+
∑

i>j

1

rij







φe(r;R) = Ee(R)φe(r;R) (181)

and the electronic energy obtained contributes a potential term to the motion of
the nuclei described by the nuclear wavefunction φN(R).

ĤNφN(R) =







−∑

A

1

2MA
∇2

A + Ee(R) +
∑

A>B

ZAZB

RAB







φN(R) = EtotφN(R) (182)

As a final note, many textbooks, including Szabo and Ostlund [4], mean total
energy at fixed geometry when they use the term “total energy” (i.e., they neglect
the nuclear kinetic energy). This is just Eel of equation (169), which is also Ee

plus the nuclear-nuclear repulsion. A somewhat more detailed treatment of the
Born-Oppenheimer approximation is given elsewhere [6].

7.3 Separation of the Nuclear Hamiltonian

The nuclear Schrödinger equation can be approximately factored into transla-
tional, rotational, and vibrational parts. McQuarrie [1] explains how to do this
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for a diatomic in section 10-13. The rotational part can be cast into the form
of the rigid rotor model, and the vibrational part can be written as a system
of harmonic oscillators. Time does not allow further comment on the nuclear
Schrödinger equation, although it is central to molecular spectroscopy.
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8 Solving the Electronic Eigenvalue Problem

Once we have invoked the Born-Oppenheimer approximation, we attempt to solve
the electronic Schrödinger equation (171), i.e.



−1

2

∑

i

∇2
i −

∑

iA

ZA

riA
+
∑

i>j

1

rij



ψe(r;R) = Eeψe(r;R) (183)

But, as mentioned previously, this equation is quite difficult to solve!

8.1 The Nature of Many-Electron Wavefunctions

Let us consider the nature of the electronic wavefunctions ψe(r;R). Since the
electronic wavefunction depends only parametrically on R, we will suppress R in
our notation from now on. What do we require of ψe(r)? Recall that r represents
the set of all electronic coordinates, i.e., r = {r1, r2, . . . rN}. So far we have left
out one important item—we need to include the spin of each electron. We can
define a new variable x which represents the set of all four coordinates associated
with an electron: three spatial coordinates r, and one spin coordinate ω, i.e.,
x = {r, ω}.

Thus we write the electronic wavefunction as ψe(x1,x2, . . . ,xN). Why have
we been able to avoid including spin until now? Because the non-relativistic
Hamiltonian does not include spin. Nevertheless, spin must be included so that
the electronic wavefunction can satisfy a very important requirement, which is the
antisymmetry principle (see Postulate 6 in Section 4). This principle states that
for a system of fermions, the wavefunction must be antisymmetric with respect
to the interchange of all (space and spin) coordinates of one fermion with those
of another. That is,

ψe(x1, . . . ,xa, . . . ,xb, . . . ,xN) = −ψe(x1, . . . ,xb, . . . ,xa, . . . ,xN) (184)

The Pauli exclusion principle is a direct consequence of the antisymmetry princi-
ple.

45



A very important step in simplifying ψe(x) is to expand it in terms of a set
of one-electron functions, or “orbitals.” This makes the electronic Schrödinger
equation considerably easier to deal with.3 A spin orbital is a function of the space
and spin coordinates of a single electron, while a spatial orbital is a function of a
single electron’s spatial coordinates only. We can write a spin orbital as a product
of a spatial orbital one of the two spin functions

χ(x) = ψ(r)|α〉 (185)

or
χ(x) = ψ(r)|β〉 (186)

Note that for a given spatial orbital ψ(r), we can form two spin orbitals, one with
α spin, and one with β spin. The spatial orbital will be doubly occupied. It is
possible (although sometimes frowned upon) to use one set of spatial orbitals for
spin orbitals with α spin and another set for spin orbitals with β spin.4

Where do we get the one-particle spatial orbitals ψ(r)? That is beyond the
scope of the current section, but we briefly itemize some of the more common
possibilities:

• Orbitals centered on each atom (atomic orbitals).

• Orbitals centered on each atom but also symmetry-adapted to have the cor-
rect point-group symmetry species (symmetry orbitals).

• Molecular orbitals obtained from a Hartree-Fock procedure.

We now explain how an N -electron function ψe(x) can be constructed from
spin orbitals, following the arguments of Szabo and Ostlund [4] (p. 60). Assume
we have a complete set of functions of a single variable {χi(x)}. Then any function
of a single variable can be expanded exactly as

Φ(x1) =
∑

i

aiχi(x1). (187)

3It is not completely necessary to do this, however; for example, the Hylleras treatment of the Helium atom
uses two-particle basis functions which are not further expanded in terms of single-particle functions.

4This is the procedure of the Unrestricted Hartree Fock (UHF) method.
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How can we expand a function of two variables, e.g. Φ(x1, x2)?

If we hold x2 fixed, then

Φ(x1, x2) =
∑

i

ai(x2)χi(x1). (188)

Now note that each expansion coefficient ai(x2) is a function of a single variable,
which can be expanded as

ai(x2) =
∑

j

bijχj(x2). (189)

Substituting this expression into the one for Φ(x1, x2), we now have

Φ(x1, x2) =
∑

ij

bijχi(x1)χj(x2) (190)

a process which can obviously be extended for Φ(x1, x2, . . . , xN).

We can extend these arguments to the case of having a complete set of functions
of the variable x (recall x represents x, y, and z and also ω). In that case, we
obtain an analogous result,

Φ(x1,x2) =
∑

ij

bijχi(x1)χj(x2) (191)

Now we must make sure that the antisymmetry principle is obeyed. For the
two-particle case, the requirement

Φ(x1,x2) = −Φ(x2,x1) (192)

implies that bij = −bji and bii = 0, or

Φ(x1,x2) =
∑

j>i

bij[χi(x1)χj(x2) − χj(x1)χi(x2)]

=
∑

j>i

bij|χiχj〉 (193)
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where we have used the symbol |χiχj〉 to represent a Slater determinant, which
in the genreral case is written

|χ1χ2 . . . χN〉 =
1√
N !

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

...
...

...
χ1(xN) χ2(xN) . . . χN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(194)

We can extend the reasoning applied here to the case of N electrons; any
N -electron wavefunction can be expressed exactly as a linear combination of all
possible N -electron Slater determinants formed from a complete set of spin or-
bitals {χi(x)}.

8.2 Matrix Mechanics

As we mentioned previously in section 2, Heisenberg’s matrix mechanics, although
little-discussed in elementary textbooks on quantum mechanics, is nevertheless
formally equivalent to Schrödinger’s wave equations. Let us now consider how we
might solve the time-independent Schrödinger equation in matrix form.

If we want to solve Ĥψe(x) = Eeψe(x) as a matrix problem, we need to find a
suitable linear vector space. Now ψe(x) is an N -electron function that must be
antisymmetric with respect to interchange of electronic coordinates. As we just
saw in the previous section, any such N -electron function can be expressed exactly

as a linear combination of Slater determinants, within the space spanned by the
set of orbitals {χ(x)}. If we denote our Slater determinant basis functions as |Φi〉,
then we can express the eigenvectors as

|Ψi〉 =
I
∑

j

cij|Φj〉 (195)

for I possible N-electron basis functions (I will be infinite if we actually have a
complete set of one electron functions χ). Similarly, we construct the matrix H

in this basis by Hij = 〈Φi|H|Φj〉.
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If we solve this matrix equation, H|Ψn〉 = En|Ψn〉, in the space of all pos-
sible Slater determinants as just described, then the procedure is called full

configuration-interaction, or full CI. A full CI constitues the exact solution to
the time-independent Schrödinger equation within the given space of the spin or-
bitals χ. If we restrict the N -electron basis set in some way, then we will solve
Schrödinger’s equation approximately. The method is then called “configuration
interaction,” where we have dropped the prefix “full.” For more information on
configuration interaction, see the lecture notes by the present author [7] or one of
the available review articles [8, 9].
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pages 143–269. Academic Press, New York, 1999.

50


