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Most algorithms in ab initio electronic structure theory compute quantities in terms of one- and
two-electron integrals. Let us consider the form of these integrals and their permutational sym-
metries. Here we find it helpful to employ the notation of Szabo and Ostlund, Modern Quantum
Chemistry.

Let us start with molecular spin orbitals, y(x), which describe the motion of a single electron
as a function of spatial coordinates and a spin coordinate, denoted collectively by x, where x =
{z,y,z,w} orx ={r,60,¢,w}, with w being a formal “spin coordinate” used by Szabo and Ostlund.
Typically, a spin orbital is written as a product of a spatial part times a spin function (usually just
a or f3), i.e., x(x) = ¢(r)a(w) or x(x) = ¢(r)B(w), where ¢(r) is a spatial orbital that depends
only on the spatial coordinates such as r = {x,y, z} or r = {r, 0, ¢}.

There are two standard notations for integrals in terms of molecular spin orbitals, denoted
“physicists’ notation” and “chemists’ notation.” The physicists’ notation lists all complex-conjugate
functions to the left, and then non-complex-conjugate functions to the right. For two-electron in-
tegrals, within a pair of complex-conjugate functions (or non-complex-conjugate functions), the
orbital for electron 1 would be listed first, followed by the orbital for electron 2. In chemists’
notation, by contrast, one lists the functions for electron 1 on the left, followed by functions for
electron 2 on the right. Within each pair, one lists the complex-conjugate functions first, followed
by the non-complex-conjugate functions.

The one-electron integrals are the easiest. One-electron integrals over spin orbitals in physicist’s
notation are defined as

(inlg) = [ dxix; (x0)h(r)x(x) 1)
where the one-electron Hamiltonian operator B(rl) is defined as

h(ry) = —lvf _yZa (2)
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It is immediately obvious that

(ilhlg) = (Glhl)". (3)
Szabo and Ostlund use square brackets to distinguish spin-orbital integrals in chemists’ notation
from those in physicists’ notation as given above. For the case of one-electron integrals, there is

in fact no distinction between physicists’ notation and chemists’ notation, and so the chemists’
notation one-electron spin-orbital integral,

ilhlj] = [ dxi; ()b x () (4)

is identical to the physicists’ notation (i|h|j). Thus we also know that

[e|hl5] = [j|nld]". (5)
If the orbitals are real, then

(ilhlj) = (jInli) (6)

[i|hls] = [7|hld] (7)

If spin is integrated out, we are left with integrals in terms of spatial orbitals only. It is customary
to denote integrals over spatial orbitals by parentheses, i.e.,

(iRl = [ drig;(e)h(e);(ra). ®)

Note again that there is no actual distinction between physicists’ and chemists’ notation for one-
electron spatial orbital integrals. The above permutational symmetries hold for spatial orbital
one-electron integrals also, namely,

(elhlj) = (jlhl2)" (9)
for complex orbitals, and

(ilhlg) = (3lhlz) (10)
for real orbitals.

Permutational symmetries in the two-electron integrals are somewhat more interesting. The
two-electron integral in physicists’ notation is

(i1k1) = [ dxadsa; () (%2) - (xa)xi(xa) (11)
12
while in chemists’ notation it is written
ilki] = [ dxidxa () (61) i (e o) (12)



Clearly the integral is unchanged if the dummy indices of integration are permuted. This leads
to the symmetry

(ijlkt) = (jillk) (13)
Furthermore, the complex conjugate of the integral is
(ij]kl) = (kllig)® (14)
Combining these two symmetries leads to one further equality, namely
(ij[kt) = (Ik|ji)* (15)
Therefore, in the general case we have
(ijlkt) = (illk) = (kl|ij)™ = (Ik|j2)" (16)
or
[ij]Kl] = [Kllig] = [gillk]™ = [tk|7i]" (17)

For the case of real orbitals, we can clearly remove the complex conjugations in the equations
above, leading to a four-fold permutational symmetry in the two-electron integrals. However, an
additional symmetry arises if the orbitals are real: in that case, the same integral is obtained if
i and k (or j and [) are swapped in (ij|kl). It is trivial to verify that this leads to an overall
eightfold permutational symmetry,

(igkt) = (Giltk) = (Kllig) = (Iklji) = (18)
(kjlil) = (liljk) = (illkj) = (Gk[l7)
[ig|kl] = [Kllij] = [7illk] = [Ik|ji] = (19)
[ilkl] = [Ik]ij] = [ig|lk] = [kl]]

Finally, it is worthwhile to consider the permutational symmetries in the antisymmetrized
two-electron integral, (ij||kl), defined as

(ijl|kl) = (uj|kl) — (ij|lk) (20)
= [ik]jl] = [il|jk] (21)

In the general case, the permutational symmetries are

(ijl[kl) = Gilltk) = (Klllig)"™ = (Ik|[77)" = (22)
—(ijlltk) = = (gil|kl) = = (lk[li7)" = — (kL[ |j7)"
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One consequence of these relationships is that
(ii]|jk) = (ij|[kk) = 0 (23)

If we integrate out spin, we are left again with integrals over spatial orbitals ¢(r). Most
frequently, two-electron integrals over spatial orbitals are written in chemists’ notation as,

(ilk1) = [ desdrss; (1), (0e0) - 61 ()1 (x2) (24)
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These integrals have the same permutational symmetries as the two-electron integrals over spin
orbitals in chemists’ notation, namely,

(ij[kt) = (Kllij) = (jillk)™ = (Ik[ji)" (25)
for complex orbitals, and
(ij|kt) = (Kl|ig) = (jiltk) = (Ik|ji) = (jilkl) = (Ik|ij) = (ij]lk) = (KL]ji) (26)

for real orbitals.



