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1 Introduction

These notes describe the multiconfigurational self-consistent-field (MCSCF) method, which is
a general approach for describing chemical systems in which a single electron configuration is
no longer an adequate description of the electronic structure. This commonly happens in reac-
tions that break or form chemical bonds, diradicals, and metals of the first transition row. A
single-determinant, restricted Hartree-Fock (RHF) wavefunction does not dissociate properly for
homolytically breaking a covalent bond of a closed-shell molecule, as it includes unphysical ionic
terms at large distances. Unrestricted Hartree-Fock (UHF) provides a qualitatively correct poten-
tial energy curve, but the results are often quantitatively poor, and the wavefunction is no longer
an eigenfunction of the spin operator Ŝ2. To keep a spin eigenfunction, we need to include at
least two determinants in our zeroth-order wavefunction to homolytically break a single covalent
bond for a closed-shell molecule, because at dissociation, there should be two degenerate electron
configurations, · · · (σ)2 and · · · (σ∗)2.

In the MCSCF method, one writes the wavefunction in CI form as a linear combination of Slater
determinants (or configuration state functions, CSF’s), and the CI coefficients are determined
variationally, as usual for CI wavefunctions. However, the orbitals are obtained not as those that
minimize the energy of a single Slater determinant, as in Hartree-Fock theory, but as those which
minimize the CI energy of the MCSCF wavefunction.

2 Types of MCSCF Wavefunctions

The MCSCF wavefunction is written in CI form as:

ΨMCSCF =
CI∑
I

cIΦI , (1)

where ΦI are individual Slater determinants (or CSF’s) which have been selected by the user for in-
clusion in the wavefunction. For the purposes of these notes, we will assume these are simply Slater
determinants, with no real loss of generality. If these determinants are selected by hand, we have
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a general MCSCF wavefunction. If these determinants are selected as all possible ones that can be
formed within a given set of “active” orbitals, we have a complete-active-space self-consistent-field
(CASSCF) wavefunction, which has been popularized [1] by Roos et al. This approach has also
been called full-optimized reaction space (FORS) [2, 3] by Ruedenberg and co-workers. CASSCF
or FORS has the advantage that the method is somewhat more “black box,” the user having only
to select an active space and not a list of individual configurations. Additionally, the wavefunction
tends to be easier to converge for CASSCF than for general MCSCF. An intermediate solution is
the restricted-active-space self-consistent-field (RASSCF) approach of Malmqvist et al. [4], which
is an SCF version of the restricted-active-space configuration interaction (RASCI) method [5] of
Olsen et al. In the RASCI, the orbitals are split into at least three groups, labelled RAS I, RAS
II, and RAS III. The determinants are chosen as all those which have no more than n holes in
RAS I, and no more than m particles in RAS III, where n and m are provided by the user.

3 The Basic MCSCF Equations

From the CI expression 1, we can write the energy as

E =
CI∑
IJ

c∗IcJHIJ , (2)

where HIJ denotes the matrix element of the electronic Hamiltonian between determinants ΦI and
ΦJ . These matrix elements can all be written in terms of one- and two-electron integrals (Slater’s
rules). Here we will write our results in terms of the unitary group generators (or shift operators)
[6]:

Êpq = a†pαaqα + a†pβaqβ, (3)

where a†pα is a creation operator for an electron in orbital p with α spin, aqα is an annihilation
operator for an electron in orbital q with α spin, etc. The Hamiltonian in terms of these operators
is:

Ĥ =
K∑
pq

(p|h|q)Êpq +
1

2

K∑
pqrs

(pq|rs)
(
ÊpqÊrs − δqrÊps

)
, (4)

and the matrix element HIJ = 〈ΦI |Ĥ|ΦJ〉 becomes

HIJ =
∑
pq

γIJpq hpq +
1

2

∑
pqrs

ΓIJpqrs(pq|rs), (5)

where γIJpq and ΓIJpqrs are simply the coefficients in front of the one- and two-electron integrals for
this matrix element, and are called the coupling coefficients. Specifically, they are

γIJpq = 〈ΦI |Êpq|ΦJ〉, (6)

ΓIJpqrs = 〈ΦI |ÊpqÊrs − δqrÊps|ΦJ〉. (7)
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The coupling coefficients have the following properties due to the anticommutation relations of
creation and annihilation operators:

γIJpq = (γIJqp )∗, (8)

ΓIJpqrs = ΓIJrspq = (ΓJIsrqp)
∗ = (ΓJIqpsr)

∗. (9)

Using equation (5), we obtain for the energy

E =
CI∑
IJ

c∗IcJ

[∑
pq

γIJpq hpq +
1

2

∑
pqrs

ΓIJpqrs(pq|rs)
]
. (10)

We can rewrite this in a simpler form by summing over the CI coefficients in the inner loops as:

E =
∑
pq

hpqγpq +
1

2

∑
pqrs

Γpqrs(pq|rs), (11)

with

γpq =
CI∑
IJ

c∗IcJγ
IJ
pq , (12)

Γpqrs =
CI∑
IJ

c∗IcJΓIJpqrs, (13)

which are called the one- and two-particle density matrices, respectively. Note that some re-
searchers write the two-particle density matrix Γ with the factor of 1/2 absorbed into it.

Having a convenient form for the MCSCF energy, we need to be able to differentiate this energy
with respect to orbital rotations so that we may minimize the energy with respect to the orbitals.
The final, optimized orbitals C may be written as some unitary transformation U of the original
orbitals C0:

C = C0U, (14)

with C and C0 being matrices of the MO coefficients with a number of rows equal to the number
of AO’s and the number of columns being the number of MO’s. The matrix U, as long as it is a
strictly unitary matrix, does not spoil the orthogonality of the original orbitals.

3.1 Exponential Parameterization

The most common way of parameterizing U is to write it as the exponential of an anti-Hermitian
matrix,

U = eR, (15)

where
R† = −R. (16)
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We can expand U to second order in R by using the power series expansion of the exponential,
to obtain the following expression for the new molecular orbitals through second order:

φp ≈ φ0
p +

∑
q

φ0
q

(
Rqp +

1

2

∑
r

RqrRrp

)
. (17)

Of course, by truncating the expansion at second order, the matrix U is no longer unitary, and
it is necessary to explicitly re-orthogonalize the orbitals. The final MCSCF energy is invariant to
rotations among some pairs of orbitals p and q, and the corresponding matrix elements Rpq need
not be included in the matrix R. Pairs of orbitals for which the energy changes when they are
mixed are called “independent pairs,” discussed below.

3.2 Givens Parameterization

An alternative way to write U that avoids the need to truncate the expansion of the exponential
is to write it as a series of Givens rotation matrices:

U =
∏
(pq)

Gpq(θpq), (18)

where the product runs over all unique independent pairs p, q. Gpq(θpq) represents a (unitary)
rotation matrix which is identical to the unit matrix except for sine and cosine functions at the
pp, pq, qp, and qq positions:

Gpq(θpq) =



. . .

1
cosθpq sinθpq

1
. . .

1
−sinθpq cosθpq

1
. . .



(19)

An advantage of this approach is that the matrix U remains orthogonal as long as numerical errors
do not accumulate. This approach has been used to implement the optimized-orbital coupled-
cluster doubles (OO-CCD) method [7].

With this parameterization, the orbital optimization leads to the following stationary condition
for the energy:

∂E

∂U

∂U

∂θ
= 0. (20)
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Only the term ∂E/∂U depends on the electronic structure model. The derivative of U with
respect to a particular orbital rotation angle θpq is simply

∂U

∂θpq
=

 ∏
(rs)<(pq)

Grs(θrs)

 ∂Gpq

∂θpq

 ∏
(rs)>(pq)

Grs(θrs)

 , (21)

where ∂Gpq/∂θpq is a matrix of all zeros except for elements pp, pq, qp, and qq:

∂Gpq

∂θpq
=



. . .

0
−sinθpq cosθpq

0
. . .

0
−cosθpq −sinθpq

0
. . .



(22)

An algorithm for evaluating the contribution of (21) has been given by Head-Gordon and Pople
[8].

3.3 Independent Pairs

In MCSCF, the total energy is typically invariant to some of the orbital rotations. For example,
consider the electronic structure of methylene, CH2. The ground electronic state, X̃ 3B1, arises
from the electron configuration (1a1)

2(2a1)
2(1b2)

2(1b1)(3a1). A low-lying excited electronic state,
ã 1A1, has strong contributions from two different electron configurations and may be described
by the wavefunction C1(1a1)

2(2a1)
2(1b2)

2(3a1)
2 + C2(1a1)

2(2a1)
2(1b2)

2(1b1)
2. Suppose we set up

a two-configuration self-consistent-field (TCSCF) treatment for this ã 1A1 state (this is just a
special case of MCSCF with only two configurations). Clearly, any unitary rotation of the 1a1 and
2a1 orbitals will have no effect on the total energy, because both orbitals are doubly occupied in
all configurations of the MCSCF. Such a rotation will also not affect either of the CI coefficients
in this case, because both configurations treat these two orbitals completely equivalently. If we
had configurations in the MCSCF that partially occupied these orbitals, then the orbital rotation
would change the optimal CI coefficients. However, if the orbitals are treated the same way (e.g.,
both are always doubly occupied, or single and double excitations are allowed out of both, etc.),
then after any necessary reoptimization of the CI coefficients, the MCSCF total energy will not
change. A pair of orbitals whose rotation does not change the total energy is called a “dependent
pair.”
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An “independent pair,” is one whose rotation does change the total energy. For example,
rotating the 1a1 with the 3a1 orbital for our methylene TCSCF does change the total energy,
because these orbitals are not treated equivalently in the TCSCF: 1a1 is doubly occupied in both
configurations, but 3a1 is only doubly occupied in one of the configurations. When performing an
MCSCF, we only need to perform orbital rotations for the independent pairs. For the dependent
pairs, we do not need their orbital gradients, their Lagrangian elements, or corresponding elements
of the (actual or approximate) MO Hessian. In fact, attempting to optimize the dependent pairs
could actually lead to numerical problems.

A restricted active space self-consistent-field (RASSCF) procedure [4] is the MCSCF gener-
alization of a restricted active space configuration interaction (RASCI) [5] treatment. In this
approach, the CI divides the orbitals into different sets (RAS I, RAS II, RAS III, etc.), and places
restrictions on the maximum number of holes and particles for each set. Because the orbitals
within a given RAS set are treated equivalently in the CI, pairs of orbitals from the same RAS
space are dependent pairs. However, rotations that mix the different RAS spaces will typically
change the energy, so these are independent pairs.
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