Next: Determinants
Up: linear_algebra
Previous: Vectors
A matrix is a rectangular collection of numbers (again, possibly complex).
It might represent a collection of row/column vectors, or a transformation
that changes a vector into a different vector. For example, the rotation
of a real 2D vector by an angle
about the
axis could be
represented as a 2x2 matrix,
The effect of this rotation on a 2D vector in the
plane can
be determined by multiplying the vector by this transformation matrix,
 |
(9) |
where
and
.
More generally, the product of a matrix and a column vector may be
written as
 |
(10) |
where
Notice that each element of the product,
, is just the
dot product of the
th row of the matrix with the vector.
It is also possible to think of the column vector
as
being a linear combination of the columns of the matrix
,
with each column
having a weight
.
It is also possible to ``left-multiply'' a matrix by a row vector, like
this:
 |
(12) |
where
This time, each element of the product,
, is the dot product
of the vector on the left with the
th column of the matrix.
The row vector
may be thought of as a linear combination
of the rows of the matrix
, with each row
having a weight
of
.
From the information given, it should be obvious that a row vector
times a matrix times a column vector yields a number (scalar).
Now consider the multiplication of two matrices
and
,
which yields a new matrix,
:
where
 |
(15) |
That is, each element
of the product matrix
is the result of a dot product between
row
of the matrix
and column
of the matrix
.
It is possible to think of matrix multiplication as a generalization
of the product of a matrix times a vector, where now instead of one
column vector on the right, we have a series of them. It is also
possible to think of matrix multiplication as a generalization of
the product of a row vector times a matrix, where now instead of
one row vector on the left, we have a series of them.
The transpose of a matrix
, typically denoted
, is obtained simply by swapping elements across the diagonal,
. For example,
 |
(16) |
For complex numbers, usually the complex conjugate transpose, or
adjoint, is more useful. The adjoint of a matrix
is often
denoted
. For example,
 |
(17) |
If a matrix
is equal to its adjoint
, it is
said to be a Hermitian matrix. Clearly, this can only happen if
the diagonal elements are real (otherwise,
will never equal
,
for example). One can also take the adjoint of a vector, which is
effectively what one does in order to take a dot product of two complex
vectors (see above):
 |
(18) |
Next: Determinants
Up: linear_algebra
Previous: Vectors
David Sherrill
2006-08-15