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1 Vectors

In quantum mechanics, we are generally interested in complex numbers. Let Cn denote the set of all n-
tuples of complex numbers (a complex n-space). The elements of Cn may be called “points” or “vectors”
in complex n-space. The elements of the complex numbers C are scalars.

A vector might be denoted by listing all its elements as (c1c2c3 · · · cn). This format is called a row
vector. Alternatively, the elements could be arranged as

c1
c2
c3
...
cn

 ,

which is a column vector. Our default choice will be to write vectors as column vectors, and row vectors
will result from taking (complex conjugate) transposes of vectors.

When a vector is multiplied by a scalar (a number), this is the same as multiplying each component
of the vector by that scalar, e.g.,

2

 1
0
3

 =

 2
0
6

 . (1)

For real numbers, the dot (or inner) product between two vectors a and b is given by

a · b = (a1a2 · · · an) ·


b1
b2
...
bn


= a1b1 + a2b2 + · · ·+ anbn (2)
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If a and b are complex, then one small complication arises. If a and b are given by

a =


a1
a2
...
an

 , b =


b1
b2
...
bn

 , (3)

then to take the dot product of a and b, we must first take the complex transpose of a,

a · b = (a∗1a
∗
2 · · · a∗n) ·


b1
b2
...
bn


= a∗1b1 + a∗2b2 + · · ·+ a∗nbn. (4)

Recall that the complex conjugate of a complex number like c + id is c − id (the imaginary part has its
sign reversed). Any time a row vector is converted into a column vector (or vice versa), if it is complex,
then one needs to take complex conjugates of each element.

(a∗1a
∗
2 · · · a∗n)↔


a1
a2
...
an

 . (5)

A vector a is said to be normalized if its dot product with itself, a · a, is 1. If this is not the case,
it is always possible to normalize the vector to force the dot product to come out to 1; one merely
needs to divide each component of the vector by the square root of the dot product that results before
normalization. For example, the vector

a =

(
1
1

)
(6)

is not normalized, because its dot product with itself is 1 · 1 + 1 · 1 = 2. However, if we divide the vector
by
√

2, then the resulting vector

a′ =
1√
2

(
1
1

)
(7)

is normalized:
1√
2

(
1 1

)
· 1√

2

(
1
1

)
=

1√
2

1√
2

(1 · 1 + 1 · 1) =
1

2
· 2 = 1. (8)

Two vectors a and b are said to be orthogonal if their dot product a ·b = 0. Two vectors are orthonormal
if they are orthogonal and each one is normalized.
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2 Matrices

A matrix is a rectangular collection of numbers (again, possibly complex). It might represent a collection
of row/column vectors, or a transformation that changes a vector into a different vector. For example,
the rotation of a real 2D vector by an angle θ about the z axis could be represented as a 2x2 matrix,(

cosθ −sinθ
sinθ cosθ

)
.

The effect of this rotation on a 2D vector in the x, y plane can be determined by multiplying the vector
by this transformation matrix, (

x′

y′

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
, (9)

where x′ = xcosθ − ysinθ and y′ = xsinθ + ycosθ.

More generally, the product of a matrix and a column vector may be written as
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann



b1
b2
...
bn

 =


c1
c2
...
cn

 , (10)

where

c1 = a11b1 + a12b2 + · · ·+ a1nbn (11)
c2 = a21b1 + a22b2 + · · ·+ a2nbn

...
cn = an1b1 + an2b2 + · · ·+ annbn.

Notice that each element of the product, ci, is just the dot product of the ith row of the matrix with the
vector. It is also possible to think of the column vector c as being a linear combination of the columns of
the matrix A, with each column i having a weight bi.

It is also possible to “left-multiply” a matrix by a row vector, like this:

(b1b2 · · · bn)


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 = (c1c2 · · · cn) , (12)
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where

c1 = b1a11 + b2a21 + · · ·+ bnan1 (13)
c2 = b1a12 + b2a22 + · · ·+ bnan2

...
cn = b1a1n + b2a2n + · · ·+ bnann.

This time, each element of the product, ci, is the dot product of the vector on the left with the ith column
of the matrix. The row vector c may be thought of as a linear combination of the rows of the matrix A,
with each row i having a weight of bi.

From the information given, it should be obvious that a row vector times a matrix times a column
vector yields a number (scalar).

Now consider the multiplication of two matrices A and B, which yields a new matrix, C:
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann



b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
...

...
bn1 bn2 · · · bnn

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

...
cn1 cn2 · · · cnn

 , (14)

where
cij = ai1b1j + ai2b2j + · · ·+ ainbnj. (15)

That is, each element cij of the product matrix C is the result of a dot product between row i of the matrix
A and column j of the matrix B. It is possible to think of matrix multiplication as a generalization of
the product of a matrix times a vector, where now instead of one column vector on the right, we have a
series of them. It is also possible to think of matrix multiplication as a generalization of the product of a
row vector times a matrix, where now instead of one row vector on the left, we have a series of them.

The trace of a matrix, denoted Tr(A), is just the sum of the diagonal elements of a matrix, i.e.,

Tr(A) =
n∑
i

aii (16)

for an n by n matrix.

The transpose of a matrix A, typically denoted AT , is obtained simply by swapping elements across
the diagonal, aij → aji. For example, (

a b
c d

)T

=

(
a c
b d

)
. (17)
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For complex numbers, usually the complex conjugate transpose, or adjoint, is more useful. The
adjoint of a matrix A is often denoted A†. For example,(

a b
c d

)†
=

(
a∗ c∗

b∗ d∗

)
. (18)

If a matrix A is equal to its adjoint A†, it is said to be a Hermitian matrix. Clearly, this can only happen
if the diagonal elements are real (otherwise, a will never equal a∗, for example). One can also take the
adjoint of a vector, which is effectively what one does in order to take a dot product of two complex
vectors (see above):


a1
a2
...
an


†

= (a∗1a
∗
2 · · · a∗n) , (a1a2 · · · an)† =


a∗1
a∗2
...
a∗n

 . (19)

3 Determinants

The determinant of a matrix A is denoted |A| and is a scalar quantity (i.e., a number). This number is
involved in computation of inverse matrices (below). For the trivial case of a 1x1 matrix, the determinant
is just the number in the matrix. For a 2x2 matrix, the determinant is easily computed as∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a21a12. (20)

For a 3x3 matrix, the determinant is again easily computed, being∣∣∣∣∣∣∣
a11a12a13
a21a22a23
a31a32a33

∣∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12. (21)

Note that each term consists of the product of three factors. The positive terms can be obtained by
starting on the top row and multiplying by elements going down and to the right diagonally, wrapping
around when hitting the edge of the determinant. Similarly, negative terms can be obtained by starting
on the bottom row and multiplying by elements going up and to the right diagonally, wrapping around
when hitting an edge.

Another simple case for computing determinants is that of diagonal (or triangular) matrices, where
the determinant is just the product of the entries on the main diagonal.
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For more general matrices, there is a procedure for computing determinants which involves cofactor
matrices

|A| = ai1Ai1 + ai2Ai2 + · · ·+ ainAin, (22)

where aij are the elements of matrix A and Aij are the cofactors, which are (−1)i+j times the determi-
nant of a smaller (n−1)× (n−1) matrix found by eliminating row i and column j [Aij = (−1)i+j|Mij|
]. Obviously there is a problem if we are defining a determinant in terms of other determinants! How-
ever, we can apply these rules iteratively until we get to 3x3 or 2x2 matrices, for which we can take
determinants using the simple rules given above. You may wish to confirm that the cofactor method,
when applied to the case of a 3x3 matrix, yields equation (21) when the cofactors of the smaller 2x2
matrices are evaluated using the aid of equation (20).

4 Inverse Matrices

The inverse of a matrix is another matrix which, when multiplied by the first matrix, yields the unit
matrix I (a matrix with all zeroes except 1’s down the diagonal).

A−1A = I. (23)

In the general case, the inverse may be written

A−1 =
1

|A|
AT

cof , (24)

where AT
cof is the transpose of the matrix of cofactors Aij = (−1)i+j|Mij|. For example:

(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
. (25)

Clearly, there are major problems in finding the inverse of a matrix if it has a determinant equal to zero,
since the formula for A−1 involves dividing by the determinant. In such cases, we say that A is singular
and has no inverse.

5 Eigenvectors and Eigenvalues

The eigenvectors of a matrix A are those special vectors v for which Av = λv, where λ is an associated
constant (possibly complex) called the eigenvalue. Let us rearrange the eigenvalue equation to the form
(A−λ)v = 0, where 0 represents a vector of all zeroes (the zero vector). We may rewrite this expression
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using the identity matrix I to yield (A − λI)v = 0, which will be more convienient for the next step.
Now to solve for v, multiply the left and right sides of the equation by (A− λI), if it exists. This yields
v = (A− λI)−10.

This last equation presents a challenge. Anything multiplied by the zero vector yields the zero vector,
but clearly that is a trivial solution for v that we aren’t interested in. Thus, our assumption that (A−λI)−1
exists must be wrong. The eigenvalue equation Av = λv therefore has non-trivial solutions only when
(A − λI)−1 does not exist. In our previous discussion of determinants, we noted that a matrix A does
not have an inverse if its determinant |A| is zero. Thus, we can satisfy the eigenvalue equation for those
special values of λ such that |A − λI| = 0. This is called the secular determinant, and expanding the
n×n determinant gives an n-th degree polynomial in λ called the secular equation or the characteristic
equation. Once the roots of this equation are determined to give n eigenvalues λ, these eigenvalues may
be inserted into the eigenvalue equation, one at a time, to yield n eigenvectors.

As an example, let us find the eigenvalues and eigenvectors for the 3× 3 matrix

A =

 1 0 1
0 1 0
1 0 1

 . (26)

We begin with the secular determinant |A− λI| = 0, which in this case becomes∣∣∣∣∣∣∣
1− λ 0 1

0 1− λ 0
1 0 1− λ

∣∣∣∣∣∣∣ = 0. (27)

Expanding out this determinant using the rules given above for the determinants of 3 × 3 matrices, we
obtain the following characteristic equation:

(1− λ)3 − (1− λ) = 0 (28)
(1− λ)[(1− λ)2 − 1] = 0

(1− λ)(λ)(λ− 2) = 0,

which has solutions λ = 1, 0, 2. These are the three eigenvalues of A. What are the corresponsing
eigenvectors? We substitute each of these eigenvalues, one at a time, into the eigenvalue equation, and
solve for the 3× 3 system of equations that result.

Let us begin with the eigenvalue λ = 1. Substituting this into (A− λI)v = 0, we obtain 0 0 1
0 0 0
1 0 0


 v1
v2
v3

 =

 0
0
0

 . (29)

7



This is three equations in three unknowns, which we may rewrite as

v3 = 0 (30)
0 = 0 (31)
v1 = 0. (32)

The middle equation is, of course, not particularly useful. However, we know that the components v1
and v3 of the eigenvector corresponding to λ = 1 are both zero, and there is no equation governing the
choice of v2. We are therefore free to chose any value for v2, and a valid eigenvector will result. Note
that any eigenvector times a constant will yield another valid eigenvector. Most frequently, we chose
normalized eigenvectors by convention (such that v · v = 1), so in this case we will choose v2 = 1. This
gives the final eigenvector

v =

 0
1
0

 . (33)

We can verify that this is indeed an eigenvector corresponding to the eigenvalue λ = 1 by multiplying
this eigenvector by the original matrix A: 1 0 1

0 1 0
1 0 1


 0

1
0

 = 1

 0
1
0

 , (34)

that is, multiplication of A times the eigenvector yields the eigenvector again times a constant (the
eigenvalue, λ = 1).

By a similar procedure, one can obtain the other two eigenvectors, which, when normalized, are

v(λ = 0) =
1√
2

 1
0
−1

 , v(λ = 2) =
1√
2

 1
0
1

 . (35)

Although an n×n matrix A has n eigenvalues, they are not necessarily distinct. That is, one or more
of the roots λ of the characteristic equation may be identical. In this case, we say that those eigenvalues
are degenerate. Determination of eigenvectors is somewhat more complicated in such a case, because
there will be additional flexibility in selecting them. Consider the matrix 1 0 1

0 2 0
1 0 1

 , (36)

which has the characteristic equation
(λ− 2)2λ = 0, (37)
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with solutions λ = 0, 2, 2. Although it is no difficulty to find the eigenvector corresponding to λ = 0, the
doubly-degenerate eigenvalue λ = 2 presents an additional complication. Upon substituting this value
into the eigenvalue equation, we obtain −1 0 1

0 0 0
1 0 −1


 v1
v2
v3

 =

 0
0
0

 , (38)

or

−v1 + v3 = 0 (39)
0 = 0

v1 − v3 = 0.

In this case, the first and third equations are equivalent (one equation is just the minus of the other),
and so they are not independent. Additionally, the second equation gives no information. We therefore
have only one equation to determine the three coefficients of the eigenvector. Recall that only two valid
equations resulted above for our previous non-degenerate case, because any multiple of an eigenvector
still yields a valid eigenvector. Here, a double degeneracy has lost us one of our equations. Hence, we
only know that v1 = v3 and v2 is arbitrary. Any eigenvector satisfying these rules will be satisfactory,
and clearly there are an infinite number of ways to chose them, even if we require them to be normalized.
Let us, somewhat arbitrarily, pick the normalized vector

v(λ = 2, first) =
1√
3

 1
1
1

 . (40)

Then, it is traditional to try to pick the second eigenvector for λ = 2 as orthogonal to the first (there are
reasons for doing this, most commonly because we might wish to use these vectors as a new orthonormal
basis). In that case, the following (normalized) vector will be suitable:

v(λ = 2, second) =
1√
6

 1
−2
1

 . (41)

You can verify that both of these vectors are (a) orthonormal, and (b) satisfy the eigenvalue equation for
λ = 2.
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