(20) |

In this particular case, the frequency of the photon must be the same as the frequency of the oscillator. Often, is measured in wavenumbers (cm) instead of Hertz. Since the photon obeys , the reciprocal wavelength of the photon can be written as

(21) |

Note that units of cm will result for if, for example, is in cm s, is in J m, and is in kg. Because of the numerical equivalence between and , one also frequently reports in units of cm using the above conversion. Unfortunately, spectroscopists frequently denote this as , which as we have seen is defined differently above ( and differ by a factor of ). When is reported in cm, this is actually in cm, not the defined above. One reason for this unfortunate discrepancy in notation is that spectroscopists prefer to use to refer to

What are the units of ? The SI units would be J m, but these are
not really natural units for the very small energies and distances involved
in a quantum oscillator. Frequently, these are reported in mdyn Å.
The conversion is

(22) |