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1 Introduction

Group theory is a very powerful tool in quantum chemistry. By analyzing the symmetry properties
of molecules, we can easily make predictions such as whether a given electronic transition should be
allowed or forbidden, whether a molecule should have dipole moment, whether a given vibrational
mode should be visible in the infrared or not, etc. Here we will assume a basic familiarity with
point groups and discuss how group theory can be used to determine the symmetry properties of
molecular vibrations.

2 O+
4 Has D2h Symmetry

Our example will the O+
4 cation, which has D2h point group symmetry, as shown in Figure 1. The

Cartesian coordinates of this molecule are given in Table 1, and the character table for D2h is
given in Table 2. From the table, we can see that there are eight distinct symmetry operations
for this point group: the identity (E), three different C2 rotation axes, a center of inversion
(i), and three mirror planes (σ). You can easily verify that O+

4 possesses all of these symmetry
properties. These symmetry operations form the columns of the table. There are also eight rows,
or irreducible representations, labeled Ag, B1g, . . ., B3u. The 1’s and -1’s in the table indicate
whether the irreducible representation (or irrep, for short) is symmetric or antisymmetric for that
symmetry operation.

3 How Many Vibrational Modes Belong To Each Irrep?

From the sketch of the molecular geometry and the character table, we can fairly easily deter-
mine how many vibrational modes there will be of each symmetry type (i.e., each irreducible
representation).
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Figure 1: O+

4 Cation

Table 1: O+
4 Cartesian Coordinates

----------------------------------------------------

Standard Nuclear Orientation (Angstroms)

I Atom X Y Z

----------------------------------------------------

1 O 1.320000 -0.582500 0.000000

2 O 1.320000 0.582500 0.000000

3 O -1.320000 0.582500 0.000000

4 O -1.320000 -0.582500 0.000000

----------------------------------------------------

Table 2: Character Table for Point Group D2h

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)
Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 -1 -1 1 1 -1 -1 Rz xy
B2g 1 -1 1 -1 1 -1 1 -1 Ry xz
B3g 1 -1 -1 1 1 -1 -1 1 Rx yz
Au 1 1 1 1 -1 -1 -1 -1
B1u 1 1 -1 -1 -1 -1 1 1 z
B2u 1 -1 1 -1 -1 1 -1 1 y
B3u 1 -1 -1 1 -1 1 1 -1 x
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Table 3: Character Contributions of Some Common Symmetry Operations

E 3
σ 1
C2 -1
i -3

C3 0

Table 4: Symmetry Decomposition of Atomic Motions

E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)
Stationary Atoms 4 0 0 0 0 4 0 0
Char contrib 3 -1 -1 -1 -3 1 1 1
Γred 12 0 0 0 0 4 0 0

The process is as follows. Apply each of the symmetry operations of the point group (E,
C2(z), etc.) to the molecule, and determine how many atoms are not moved by the operation.
Then, multiply this number by the so-called character contribution of that symmetry operation.
This will yeild a series of h numbers, where h is the number of distinct symmetry operations in
the point group (8 for D2h).

What is this mysterious character contribution? Technically speaking, it is the trace of the
matrix representation in xyz Cartesian coordinates of that operation. However, it is usually easier
just to memorize the character contributions of the most commonly used symmetry operations.
A partial table of character contributions is given in Table 3.

Using these rules, we can obtain an 8-member array of integers usually denoted Γred, a reducible

array. This is done in Table 3. The next step is to decompose the reducible array into a unique
linear combination of irreducible representations (irreps). This is easily accomplished using dot
products. For example, to get the number of ag modes, we take the dot product of Γred with the
row of the character table for ag, and divide by the number of operations in the group (8 for D2h).
So, Γred · Γag

/h = (12 + 4)/8 = 2. In a similar manner, we can determine the contributions from
the other irreps, to obtain a decomposition of Γred as 2 ag + 2 b1g + b2g + b3g + au + b1u + 2 b2u

+ 2 b3u.

Next, we need to subtract out the translations and rotations. The irreps of the translations can
be found in most character tables by looking for which row contains x, y, and z on the right-hand
side of the table. Here, this gives b1u, b2u, and b3u. Likewise, rotations are denoted in the table
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by Rx, Ry, Rz, which correspond to b1g, b2g, and b3g. So, subtracting these out from Γred, we find
that the vibrations are described by: 2 ag, b1g, au, b2u, and b3u. There are a total of six vibrations,
which is correct according to the 3N − 6 rule.

Below is the output from a Q-Chem calculation. These normal modes are sketched in Figure
2, along with the irreducible representations of each.

**********************************************************************

** **

** VIBRATIONAL ANALYSIS **

** -------------------- **

** **

** VIBRATIONAL FREQUENCIES (CM**-1) AND NORMAL MODES **

** INFRARED INTENSITIES (KM/MOL) **

** **

**********************************************************************

Frequency: -119.42 126.71 131.78

IR Active: YES YES YES

IR Intens: 0.466 0.000 0.000

Raman Active: YES YES YES

X Y Z X Y Z X Y Z

O -0.500 0.000 0.000 0.500 -0.001 0.000 0.000 0.000 -0.500

O 0.500 0.000 0.000 0.500 0.001 0.000 0.000 0.000 0.500

O -0.500 0.000 0.000 -0.500 0.001 0.000 0.000 0.000 -0.500

O 0.500 0.000 0.000 -0.500 -0.001 0.000 0.000 0.000 0.500

Frequency: 281.48 1689.70 1849.60

IR Active: YES YES YES

IR Intens: 0.000 ******* 0.000

Raman Active: YES YES YES

X Y Z X Y Z X Y Z

O 0.457 -0.202 0.000 0.000 0.500 0.000 0.001 0.500 0.000

O -0.457 -0.202 0.000 0.000 -0.500 0.000 0.001 -0.500 0.000

O -0.457 0.202 0.000 0.000 0.500 0.000 -0.001 -0.500 0.000

O 0.457 0.202 0.000 0.000 -0.500 0.000 -0.001 0.500 0.000
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Figure 2: Sketches of Normal Modes of O+
4

4 Symmetry-Adapted Linear Combinations

Now, how would we have come up with these vibrational normal modes if we hadn’t had the
program? Group theory isn’t sufficient to give us normal modes in general, but in this case,
it woudl almost get us there, because other than ag, no irrep has more than one vibration. In
such cases, the normal mode is symmetry-determined. In the case of irreps with more than one
vibration, group theory can at least give us a symmetry-adapted set of vectors (basis); these vectors
are mixed to form the normal modes. It is important to point out that we could say similar things
about molecular orbitals. Some MO’s may be symmetry-determined (in a sufficiently small basis
set), and others may be linear combinations of the symmetry-adapted AO’s belonging to some
irrep. Thus, we need to know how to form symmetry-adapted linear combinations (SALC’s) of
basis functions like atomic orbitals or vibrational displacement vectors. To explore this, we will
stick with our O+

4 vibrational example for now.

Let us use displacement vectors in the x, y, and z directions on each atom as our basis functions,
and then we will form SALC’s from these to see what the vibrations should look like (without the
need for computations). We do this using the technique of projection operators.

Our job is somewhat easier for this example because each atom is symmetry-equivalent to all
the others. Hence, it will suffice to apply projection operators to only the x, y, and z displacements
on one of the atoms. Let’s label the displacements as xi, yi, or zi, where i is the number of the
atom displaced. See Figure 3 for the displacements of atom 1. First, we must determine what
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Figure 3: Displacement Vectors for Atom 1 in O+
4

Table 5: Result of Symmetry Operations on Atomic Displacements

E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)
x1 x1 −x3 −x4 x2 −x3 x1 x2 −x4

y1 y1 −y3 y4 −y2 −y3 y1 −y2 y4

z1 z1 z3 −z4 −z2 −z3 −z1 z2 z4

each symmetry operator does to each of our basis vectors. Referring to Fig. 3, we can construct
Table 5, which provides the results of each symmetry operation on x1, y1, and z1.

To apply a projection operator, we dot each of the rows in Table 5 with the rows of the
character table — there will be a separate projection operator for each irrep. Because the totally
symmetric irrep contains all 1’s in its row, the rows in the Table are already the result of applying
P̂Ag

to x1, y1, and z1. Hence, P̂Ag
(x1) = 2x1 + 2x2 − 2x3 − 2x4, or x1 + x2 − x3 − x4 (we aren’t

usually too concerned about normalization). Referring to Figure 2, this is the 126.71 cm−1 ag

normal mode! Similarly, P̂Ag
(y1) = y1 − y2 − y3 + y4. This is the 1849.60 cm−1 normal mode.

Finally, P̂Ag
(z1) = 0 (all the z displacements cancel). There is no third ag mode.

We can apply projection operators to x1, y1, and z1 for each irrep to build up a complete basis
of SALC’s. As another example,

P̂Au
(x1) = x1 − x3 − x4 + x2 + x3 − x1 − x2 + x4 = 0,

P̂Au
(y1) = y1 − y3 + y4 − y2 + y3 − y1 + y2 − y4 = 0,

P̂Au
(z1) = z1 + z3 − z4 − z2 + z3 + z1 − z2 − z4 = z1 − z2 + z3 − z4.

Consulting Fig. 2, we see that P̂Au
(z1) is the 131.73 cm−1 normal mode.

Finally, let’s try the B1u irrep:

P̂B1u
(x1) = x1 − x3 + x4 − x2 + x3 − x1 + x2 − x4 = 0,

P̂B1u
(y1) = y1 − y3 − y4 + y2 + y3 − y1 − y2 + y4 = 0,

P̂B1u
(z1) = z1 + z3 + z4 + z2 + z3 + z1 + z2 + z4 = z1 + z2 + z3 + z4.
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Table 6: Result of Symmetry Operations on σ1

E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)
σ1 σ1 σ3 σ4 σ2 σ3 σ1 σ2 σ4

Now note that there is not a b1u normal mode of vibration! Why is this? If we examine the result
of P̂B1u

(z1), we see that it displaces all of the atoms in the z direction. This is just a translation

of the entire molecule in the z direction. Creating SALC’s out of Cartesian displacements will,
in general, create not only vibrations but also translations and rotations. We already discussed
above how to identify the irreps of translations and rotations.

5 Symmetry-Adapted Orbitals

As a last example, we will see that we can create SALC’s of atomic orbitals in exactly the same
way. Consider the case of ethylene (which is still point-group D2h, see Figure 4). The 4 C–H σ
bonds are symmetry-equivalent, so we can make 4 C–H bonding SALC’s.

Figure 4: Ethylene Molecular Orbitals

The four non-zero SALC’s are:

P̂Ag
(σ1) = σ1 + σ2 + σ3 + σ4
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P̂B1g
(σ1) = σ1 − σ2 + σ3 − σ4

P̂B2u
(σ1) = σ1 − σ2 − σ3 + σ4

P̂B3u
(σ1) = σ1 + σ2 − σ3 − σ4

These are pictured in Figure 4. Note that four C–H bonds go in to the symmetry-adaptation,
and four C–H SALC’s come out. We could use similar procedures to construct the remaining four
occupied orbitals, which are the symmetric (ag) combination of the two C 1s core orbitals, the
antisymmetric (b3u) combination of the two C 1s core orbitals, the ag C–C σ bonding orbital, and
the b1u C–C π bonding orbital (see Fig. 4).

Finally, it is worth commenting that we can often come up with the SALC’s by intuition
more easily than we can work out the projection operators (especially with a little experience and
practice). This is certainly true for the ethylene symmetry-adapted orbitals.
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