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1 Definitions

The following are a few notes from my reading of Higher Excited States of Polyatomic Molecules,
vol. 1, by M. .B. Robin [1].

Energy regions can be associated with certain types of transitions. Robin divides the spectrum
as follows:

0 - 10 000 cm−1: Mostly vibrational and rotational transitions of polyatomic molecules.

10 000 - 50 000 cm−1: Electronic transitions in molecules which are or unsaturated or contain
lone-pairs. The presence of air presents no experimental difficulties and quartz optics may
be used. The electronic transitions in this region (visible and quartz ultraviolet) can be
described as valence shell transitions and hence easier for theory. In the absence of theoretical
predictions, comparison to similar systems is often helpful.

50 000 - 100 000 cm−1: This is the vacuum ultraviolet, a much more treacherous region. Quartz
is opaque in this region and must be replaced by high-quality sapphire or salt optics or other
spectroscopic techniques must be used. The solvents and the presence of air may also ham-
per experiments. Furthermore, the density of valence transitions with repsect to wavenum-
ber increases dramatically after 50 000 cm−1 (it tails off again eventually, at a few hundred
thousand wavenumbers), making theoretical modelling and assignment difficult. Even worse,
Rydberg transitions typically begin around 50 000 cm−1. This energy region is the focus of
Robin’s work.

100 000 + cm−1: The extreme vacuum-ultraviolet region; there are no longer transparent, strong
window materials, and transitions are often ionizing or autoionizing.

A few other definitions regarding the transitions are in order:

Vertical: The most intense band in the vibrational Franck-Condon envelope.



Adiabatic: The frequency for a transition where both upper and lower states have no vibrational
quanta (i.e., a transition between zero-point levels).

Advertical: A transition which is both vertical and adiabatic.

2 Rydberg Transitions

Sharp transitions often occur in a series described by the hydrogen-like formula

hν = εi −
R

(n− δ)2
, (1)

where εi is the ionization potential to which the series converges, R is the Rydberg constant, n
is the quantum number (which reaches infinity at εi), and δ is called the quantum defect. Such
transitions are described as “Rydberg transitions.” However, it is also possible that Rydberg
transitions may not be sharp and therefore not easily fit to the above equation. Broad transitions
might also be valence transitions, and Robin notes that researchers at one time had a propensity
to assume that any broad transition was a valence transition. In the vacuum-ultraviolet, valence
and Rydberg states are much more likely to mix than they are in the quartz-ultraviolet.

Rydberg states can be defined as those which fit Eq. (1) and whose wavefunctions are appro-
priate to generate such a series. Excitation energies are often reported as the difference between
the Rydberg state and the corresponding ionization limit; these are referred to as “term values”
in this context. For theoretical work, it may be more desirable to compute these term values than
the actual excitation energies because the Rydberg state should look more like the ion than the
ground state; orbital relaxation and correlation effects are more likely to cancel.

While any particular valence transition may also fit Eq. (1), it will not belong to a series with
increasing quantum number n. An electron in a polyatomic molecule will fit such a formula if it
is very diffuse, so that the core appears as a point charge. Of course this will never be entirely
true, so the parameter δ is added to correct for the extent to which the distant electron penetrates
the core. The ground state of an atom may have an electron with a large radius and may thus be
referred to as a Rydberg state; for neutral polyatomics, this never happens. Rydberg transitions
may be split by core asymmetries, but the splittings decrease with increasing n because the core
becomes better modeled as a point charge as the electron radius increases.

For second-row atoms and molecules, the general trends in δ are:

ns: Penetrate the core to a large extent; δ ≈ 1.

np: Penetrate to a moderate extent; δ ≈ 0.6.



nd: Hardly penetrate the core; δ ≈ 0.

For lower rows of the periodic table, more general rules are required. A Rydberg orbital will
be nonpenetrating (δ ≈ 0) if the core does not contain any occupied orbitals of its symmetry.
Mulliken refers to such core orbitals as “real precursors.” Hence δ ≈ 0 for, e.g., 2p, 3d, and 4f
Rydberg orbitals of lithium, sodium, and potassium, respectively. Unoccupied orbitals of the same
symmetry and below the Rydberg orbital are called “virtual precursors,” although I don’t know
what effect such orbitals have on δ. The effect of real precursors on δ can be understood because
of the Rydberg AOs must be orthogonal to the occupied AOs. For orbitals of the same symmetry
type, the orthogonality must be brought about in the radial wavefunction. If the core AO has
n loops (n − 1 radial nodes) and the Rydberg orbital has n + 1 loops (n radial nodes), then the
Rydberg orbital can be (must be?) made by adding a loop which is out of phase with the tail
of the occupied orbital. Since the overall overlap must be zero, the radial wavefunctions will be
in-phase near the core region and hence have similar penetrating properties (and thus similar δ
values). Robin claims that the penetrating properties of a Rydberg orbital decrease as n increases
since the orbital must be normalized (fair enough), and that this is already reflected in that as
n increases, (n − δ) approaches n2. This last point seems odd; I should think that arguments
about extent of penetration would affect δ itself (of course this would lead to n-dependent δ’s
and would complicate the formula). Conversely, if there are no real precursors, the Rydberg
orbital can achieve orthogonality to core orbitals through its angular part and is free to be (but
must it be?) nonpenetrating. In a somewhat more mathematical treatment, Robin summarizes
arguments by Mulliken that the lowest Rydberg orbital looks the same as its real precursor, to
which an additional hydrogenic loop has been added with a phase shift intimately related to δ;
this is called “recapitulation.”

The preceeding analysis is of course not directly applicable to polyatmoic molecules. Indeed,
a nonpenetrating AO on one center may still penetrate another center, suggesting that Rydberg
orbitals in polyatomics are generally more penetrating. The recapitulation idea is now not nearly
as simple, since the Rydberg orbital must be orthogonalized against other occupied orbitals which
may have no overlap with the precursor. Generally δ(ns) > δ(np) > δ(nd) still holds, but now
quantum mechanical exchange has an effect.

So far, the discussion of penetration has implicitly assumed an effect of the form

Epen = −〈φR|
Z − 1

r
|φR〉+

∑

core

(φRφR|φCφC). (2)

This expression makes it clear that the exchange effect has been neglected

Eex = −
∑

core

(φRφC |φRφC)± (φRφ
′
C |φRφ

′
C) (3)

where the sums are only over doubly occupied core orbitals and C ′ represents a half-filled core
orbital if appropriate (contributing to a two-electron integral entering with a + or - sign for singlets



or triplets, respectively). As for Epen, Eex is expected to decrease with increasing n and to be
small when the core has no real precursors. Exchange is twice as large as penetration for Li, but
becomes less important for Li and Be (it has a positive sign for the singlet states). It is presumed
that the exchange term becomes small compared to penetration for larger atoms.

For polyatomics, the Rydberg states can mix heavily. For NO, 3s is unperturbed by mixing,
but above that ns mixes strongly with (n−1)dσ, making the ndσ series have a negative δ. Actually
this makes sense in that δ for nd is about 0 whereas δ for ns is about 1.0, so ns and (n − 1)d
orbitals are about degenerate. The ns orbitals are a bit lower, so mixing causes the (n − 1)d
orbitals to be slightly raised in energy and hence they acquire a negative δ (their binding energy
becomes slightly smaller than in hydrogen).

The singlet-triplet splitting of a pair of Rydberg states should be small because, at the SCF
level, this splitting is roughly 2K, and for Rydberg states the exchange integral should be relatively
small. In most polyatomic molecules, the singlet-triplet splitting of Rydberg states is typically less
than 5000 cm−1. One exception to this rule is found found for ethylene, where the (π, 3dπ) singlet
Rydberg configuration is strongly mixed with the singlet valence configuration (π, π∗). However,
the correspoding triplet configurations are not mixed, and thus the singlet-triplet splitting is not
given by something like 2K.

For polyatomics there is an additional difficulty in determining whether an orbital is Rydberg
or unoccupied valence; for example, in methane the carbon 3s orbital has the same nodal structure
as the antibonding σ orbital. Such orbitals are called a conjugate pair. Mulliken claims that these
are alternative descriptions of the same orbital; however, Robin argues that in the above example
the 3s orbital is nonbonding while σ∗ is antibonding and that numerous calculations support the
idea of separate valence and Rydberg states. In ethylene, the valence shell (π, π∗). and Rydberg
(π, 3dπ) configurations have the same nodal patterns, and the V state has been attributed to each
of these separately. Now the prevailing view is that the state does not fit the Rydberg formula and
is primarily a valence transition with some Rydberg character mixed in. In the triplet manifold,
the analogous configurations give rise to distinct valence and Rydberg states. If mixing of the
conjugate pair is large, then it can in fact add a node to the Rydberg orbital, which makes it
possible to describe the orbital as n + 1 instead of n (and this is the practice of some authors).
However, the size of the orbital and the frequency from Eq. (1) is much closer to that expected
for n.

Oscillator strengths of Rydberg transitions are governed by the transition moment matrix
element

µ = 〈φC |r|φR〉. (4)

As n increases, φCφR decreases and the oscillator strength has an n
−3 dependence. Also, atomic

selection rules on this matrix element (∆l = ±1) can remain important at least for diatomics.
The oscillator strength of the lowest Rydberg transition in a series never exceeds 0.08 per degree



of degeneracy, whereas for valence shell transitions values of 0.3-1.0 are easy to achieve (the V
state transition in ethylene has 0.34).

Robin notes that Rydberg orbitals are important even for valence transitions. He argues—
somewhat hand-wavingly—that altough triplet valence states are partially correlated at the Hartree-
Fock level leading to adjustments in the orbitals involved in the excitation, singlet states must
be correlated by configuration interaction and that such correlation desires to mix in orbitals of
Rydberg character. He cites the example of ethyelene, where calculations at the SCF and CI levels
both give too-high excitation energies; when Rydberg orbitals are added, the SCF and CI results
match experiment much more closely.

The following generalizations are given for Rydberg transitions converging on ionization po-
tentials other than the first:

• Rydberg excitations beyond the first ionization potential are typically broadened by autoion-
ization and appear as a broad band on the continuum.

• Since Rydberg oscillator strengths fall off rapidly in a series (theoretically as n−3), only the
first one or two transitions in a series may be observed.

• The Rydberg term values (see above for special definition of term value) are largely inde-
pendent of originating MO. Hence term values for the first ionization potential can be used
to predict or identify Rydberg excitations beyond the first ionization potential.

Experimentally, one way to distinguish between valence and Rydberg excitations is that the
Rydberg excitations can be sensitive to a “perturber gas.” This is rationalized by the diffuse nature
of the excited electron. Dramatic effects can be produced by perturber gasses with partial pressures
of only ∼ 100 atm. Of great value is the fact that the perturber gas causes pressure broadening of
the absorber only to higher frequencies. In contrast, using higher concentrations of the absorber
gas (the perturber is the absorber) causes pressure broadening to higher and lower frequencies
of both Rydberg and valence excitations. In cases where the excitations appear as continuous
bands, the pressure effect is useless unless it is greatly magnified; this can be accomplished by
trapping the absorber in a low-temperature rare-gas matrix, by dissolving it in a transmitting
solvent, or by forming a polycrystalline film of the neat absorber at low temperatures. The lowest
Rydberg excitation energy of a dilute guest molecule in a rare-gas host will increase by 2000-5000
cm−1 compared to the gas-phase spectrum, and the vibronic bandwidths will be 200-500 cm−1.
By contrast, most valence shell excitations will experience a redshift of 1000-3000 cm−1. If placed
in a low-mobility organic matrix, valence excitations behave similarly but Rydberg excitations
can broaden sufficiently as to disappear. The V state of ethylene behaves as a valence excitation
under perturbations. For diatomics and presumably for polyatomics, in condensed phases coupled
Rydberg and valence states can become uncoupled.
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