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Here we will follow some of the presentation from Werner, Manby, and Knowles.1 Density
fitting is a way to approximate the usual two-electron integrals,

(pq|rs) =
∫
dr1

∫
dr2φp(r1)φq(r1)

1

r12
φr(r2)φs(r2), (1)

where we have assumed real orbitals. We may also consider this electron repulsion integral as the
repulsion between two generalized electron densities,

(pq|rs) =
∫
dr1

∫
dr2ρpq(r1)

1

r12
ρrs(r2), (2)

where ρpq(r) = φp(r)φq(r) and ρrs(r) = φr(r)φs(r). The densities may be approximated using an
auxiliary basis set as

ρpq(r) =
Nfit∑
P

dpqP χP (r), (3)

where dpqP are the fitting coefficients. This is the origin of the name “density fitting.” There are
various methods for obtaining these fitting coefficients. If one minimizes the following (positive
definite) functional with a 1/r12 weight factor,2,3, 4

∆pq =
∫
dr1

∫
dr2

[
ρpq(r1)− ρpq(r1)

] [
ρpq(r2)− ρpq(r2)

]
r12

, (4)

then, as shown by Dunlap et al.,3,4 this minimizes the error in the electric field and leads to the
following fitting coefficients:

dpqQ =
∑
P

(pq|P )[J−1]PQ, (5)

where

(pq|P ) =
∫
dr1

∫
dr2φp(r1)φq(r1)

1

r12
χP (r2), (6)

and

JPQ =
∫
dr1

∫
dr2χP (r1)

1

r12
χQ(r2). (7)
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Thus we have replaced the usual four-index, two-electron integrals (pq|rs), with

(pq|rs) =
∫
dr1

∫
dr2ρpq(r1)

1

r12
ρrs(r2), (8)

=
∫
dr1

∫
dr2

∑
Q

dpqQχQ(r1)
1

r12
φr(r2)φs(r2),

=
∑
Q

dpqQ (Q|rs),

=
∑
PQ

(pq|P )[J−1]PQ(Q|rs).

Note that the expression above looks superficially like a resolution of the identity (RI). Indeed,
such expansions have also been called RI approximations. However, it should be pointed out that
this is not a standard RI expression (and hence the name density fitting may be more appropriate).

As mentioned above, there are a number of possible choices for the fitting coefficients dpqP
in equation 3, depending on the functional form which is minimized. Instead of equation 4,
which uses the Coulumb operator g(r1, r2) = 1/r12, one may use similar expressions which use
an overlap5,6, 7 g(r1, r2) = δ(r1 − r2), an anti-Coulomb operator g(r1, r2) = −|r1 − r2| (which
is optimal for representing the potential caused by ρpq),

8 or other choices. One disadvantage of
the Coulomb metric is that the fitting coefficients dpqP decay slowly with respect to the distance
between |pq〉 and |P 〉 (and the defining equations can even diverge in the case of periodic boundary
conditions); the overlap metric does not have these difficulties, but it is not as accurate.9 To
overcome these difficulties, Jung, Sodt, Gill, and Head-Gordon9 have investigated the attenuated
Coulomb operator, g(r1, r2) = erfc(ω|r1−r2|)/|r1−r2|, which can be tuned between the Coulomb
and overlap metrics depending on the size of ω. (Note: these authors also mention that the number
of significant quantities

∑
P (pq|P )[J−1/2]PQ (see below) grows quadratically with system size for

any of the three metrics they considered, and thus the sqare-root formulation appears to be
unsuitable for linear-scaling algorithms for large systems).

In density fitting, one normally uses atom-centered Gaussians as the auxiliary basis set, and
the size of the auxiliary basis in density fitting is usually about 3-4 times the size of the standard
basis. One small disadvantage is that different basis set work better depending on the type of
density being fit. There are Coulomb fitting basis sets for use in evaluating Coulomb integrals for
Hartree-Fock theory or Density Functional theory.10,11,12 Somewhat larger basis sets are required
to fit exchange integrals, but these also work well to fit Coulomb integrals; such “JK-fit” basis
sets have been introduced by Weigend.13 Unfortunately, these JK-fit basis sets are not optimal
for Hartree-Fock procedures; basis sets optimized to fit distributions like ρia (where i and a are
occupied and virtual orbitals, respectively) have been developed. Auxiliary basis sets have been
developed for use in conjunction with correlation-consistent basis sets for density fitted MP2 and
CC2 computations.14,15
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A closely related approach is the pseudospectral approximation, which uses a real-space grid
instead of atom-centered Gaussians as the auxiliary basis set.16,17 The Cholesky decomposi-
tion,18,19,20,21,22 when applied to electron repulsion integrals, also expresses four-index integrals
as sums of products of three-index integrals, although it avoids the use of the Coulomb metric
matrix J.

One big advantage of density fitting techniques (or other techniques expressing four-index
integrals in terms of three-index integrals) is that the storage requirements are greatly reduced.
It is much more likely that the three-index integrals will fit in memory than it is that the four-
index integrals will fit in memory. Even if neither set fits in memory, there will be much less
I/O for reading the three-index integrals from disk than there would be for reading the four-index
integrals. Of course, a disadvantage of using the three-index integrals is that, unless there is a
favorable factorization, the four-index integrals must be constructed from the three-index integrals
according to an equation like (pq|rs) =

∑
PQ(pq|P )[J−1]PQ(Q|rs). However, this floating-point

intensive procedure is usually faster than the I/O one would have to do to read the four-index
integrals. To reduce the cost of constructing the four-index integrals from the three-index integrals,
it can be advantageous to use a symmetric expression which splits the matrix J−1 into a product
J−1/2J−1/2:

(pq|rs) =
∑
PQR

(pq|P )[J−1/2]PQ[J−1/2]QR(R|rs). (9)

This form is advantageous because it factorizes:

(pq|rs) =
∑
Q

{∑
P

(pq|P )[J−1/2]PQ

}{∑
R

[J−1/2]QR(R|rs)
}

=
∑
Q

bQpqb
Q
rs, (10)

where
bQpq =

∑
P

(pq|P )[J−1/2]PQ. (11)

As pointed out by Werner et al.,1 we can reduce the time required to compute the three-index
integrals using the Scharz inequality, i.e.,

(µν|P ) ≤ (µν|µν)1/2(P |P )1/2. (12)

For relatively little computational expense, we can pre-compute the “diagonal” elements of
the 4-index and 2-index electron repulsion integrals (µν|µν) and (P |P ), and use these to estimate
the size of (µν|P ). If (µν|P ) is predicted to be sufficiently small, then we can avoid computing it
explicitly. Typically, integrals are computed by shells (e.g., a d shell includes all 5 or 6 components
of the d function, etc.). In that case, we can decide whether or not to compute a “shell triplet”
(µsνs|Ps), where µs is a shell of functions µ, etc. To do this, we can estimate the largest integral
(µν|P ) that would belong to the shell triplet (µsνs|Ps), using the maximum integral (µν|µν)max
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corresponding to the shell pair µs, νs (µ ∈ µs, ν ∈ νs) and the maximum integral (P |P )max for
P ∈ Ps. If the product (µν|µν)1/2max(P |P )1/2max is sufficiently small, we can skip computing the entire
shell triplet (µsνs|Ps).

DF-MP2

The most time-consuming step of an MP2 computation is actually the O(N5) integral transfor-
mation (the energy evaluation scales as O(N4). The overall integral transformation is

(ia|jb) =
∑
µνρσ

Ci
µC

a
νC

j
ρC

b
σ(µν|ρσ) (13)

where (ia|jb) are the required integrals in the MO basis (note that we only need this particular
subset of MO integrals, where i and j are occupied orbitals and where a and b are virtual orbitals),
(µν|ρσ) are the AO-basis integrals, and Ci

µ is the contribution of AO basis function µ to molecular
orbital i, etc. If there are Nocc occupied orbitals and Nvir virtual orbitals, then there are (ignoring
permutational symmetry) N2

occN
2
vir of the required MO integrals. Thus, the transformation above

would appear to require on the order of N2
occN

2
virN

4
AO floating-point operations. However, due to

factorization, the actual cost is less:

(iν|ρσ) =
∑
µ

Ci
µ(µν|ρσ) NoccN

4
AO (14)

(ia|ρσ) =
∑
ν

Ca
ν (iν|ρσ) NoccNvirN

3
AO (15)

(ia|jσ) =
∑
ρ

Cj
ρ(ia|ρσ) N2

occNvirN
2
AO (16)

(ia|jb) =
∑
σ

Cb
σ(ia|jσ) N2

occN
2
virNAO. (17)

Because NAO is the largest quantity, the first step is the most time-consuming.

Now in the density-fitted approach, we can factorize the work more effectively:

bQiν =
∑
µ

Ci
µb
Q
µν NoccN

2
AONaux (18)

bQia =
∑
ν

Ca
ν b
Q
iν NoccNvirNAONaux (19)

(ia|jb) =
∑
Q

bQiab
Q
jb N2

occN
2
virNaux. (20)
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The most expensive step of the DF transformation is the last one, with a cost of O(N2
occN

2
virNaux),

which is much less than O(NoccN
4
AO) from the conventional transformation (even though Naux ≈

3NAO).

For a closed-shell molecule, the MP2 correlation energy may be evaluated as

EMP2
corr =

∑
ijab

(ia|jb)2(ia|jb)− (ib|ja)

εi + εj − εa − εb
. (21)

The error caused by the DF approximation is very small as long as an appropriate DF auxiliary
basis is used (and note that, as mentioned above, one typically uses different auxiliary basis sets
for different tasks, such as Hartree-Fock or MP2). For van der Waals dimers, DF-MP2 reproduces
conventional MP2 binding energies within a few hundredths of one kcal mol−1, while providing
speedups of around 1-5x.
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