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Introduction

In studies of weakly bound clusters, one often encounters an artificial shortening of intermolecular
distances and concomitant artificial strengthening of the intermolecular interaction. Such problems
are ascribed to “basis set superposition errors” (BSSEs),1,2 and they are more pronounced for
smaller basis sets. As monomer A approaches monomer B, the dimer can be artificially stabilized as
monomer A utilizes the extra basis functions from monomer B to describe its electron distribution,
and vice versa. As pointed out by van Duijneveldt et al.,3 the improvement in the descriptions
of monomers A and B through the addition of extra accessible basis functions is not an error
in itself; the error arises from the inconsistent treatment of the monomers — they are able to
access additional functions from the other monomer at shorter intermolecular distances, but at
large intermolecular distances, the other monomer is too far away (the overlap integrals are too
small) for its functions to provide stabilization. This inconsistent treatment of the basis set for
each monomer as the intermolecular distance is varied is the source of the basis set superposition
error. Of course, even if this inconsistency could be perfectly eliminated, there would remain
errors due to the fact that the basis set is incomplete — these would be described as “basis set
incompleteness errors” (BSIEs). In the limit of a complete basis set, both the BSSE and the BSIE
would be reduced to zero.

The Boys and Bernardi counterpoise correction (CP)4 is a prescription for removing BSSE.
The typical, uncorrected interaction energy between monomers A and B would be computed as:

∆Eint(AB) = EAB(AB)− EA(A)− EB(B), (1)

where the subscripts denote the species of interest, and the symbol in parentheses denotes the
basis set used. Thus, EAB(AB) represents the energy of the bimolecular complex AB evaluated in
the dimer basis (the union of the basis sets on A and B). Likewise, monomers A and B are each
evaluated in their own basis sets. This notation may seem somewhat redundant, but it becomes
useful later. Note that the interaction energy can be computed using three separate, standard
computations: one on the dimer, one on monomer A, and one on monomer B. Alternatively, one
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could obtain the energy of the dissociation limit by a computation of the A+B supermolecule at
some very large intermolecular separation (where the distance between A and B would be so large
that the basis functions of one monomer would not overlap with those of the other); this might
be necessary for theoretical methods which are not size-extensive, such as truncated configuration
interaction, for which the energy of A+B at infinite separation is not equal to the sum of the
energies from separate computations on A and B.

We can attempt to correct Eq. (1) by estimating the amount by which monomer A is artificially
stabilized by the extra basis functions from monomer B (and vice versa). This may be estimated
as:

EBSSE,A = EA(AB)− EA(A), (2)

EBSSE,B = EB(AB)− EB(B),

where we have subtracted the energy of monomer A in its monomer basis from the energy of
monomer A in the dimer basis (and likewise for monomer B). For the moment, we have assumed
that the geometries of monomers A and B do not change as they approach each other and form
the bimolecular complex. This is often a very good approximation and simplifies the procedure;
below, we will consider the possibility that the monomer geometries are deformed as they join in
the bimolecular complex. The energy of monomer A in the dimer basis must necessarily be lower
(more stable) than the energy of monomer A in the monomer basis, so EA(AB) < EA(A), and
thus EBSSE,A < 0 as defined above (the error is stabilizing). If we subtract this error from the
interaction energy defined in Eq. (1), the terms EA(A) and EB(B) cancel, yielding:

∆ECP
int,AB = EAB(AB)− EA(AB)− EB(AB). (3)

Practically speaking, to evaluate the energy of monomer A in the dimer basis, one places
all the basis functions of monomer B on the atomic centers of monomer B while neglecting the
electrons and the nuclear charges of monomer B. The functions on monomer B are thus referred
to as “ghost functions,” or the atoms of B are referred to as “ghost atoms” in such a computation.
It has been argued that such a procedure should “overcorrect” for BSSE, because some of the
basis functions in monomer B are occupied and hence unavailable to monomer A because of the
Pauli exclusion principle. Indeed, there do appear to be situations in which the counterpoise
correction overcorrects, particularly for smaller basis sets.5,6 This appears to happen in particular
for hydrogen-bonded complexes (although the counterpoise corrected interaction energies approach
the complete basis set more smoothly and are more suitable for extrapolation).7 On the other hand,
for dispersion-dominated systems it appears that the counterpoise corrected values are superior.8

van Duijneveldt et al. have argued that the counterpoise correction does not overcorrect,3 and
that poorer agreement with experiment or higher-level theory after counterpoise correction is a
reflection of BSIE or other errors. Some researchers prefer to use the average of the uncorrected and
the counterpoise-corrected values;9 this procedure appears to work quite well for hydrogen-bonded
complexes,7 among others.
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Counterpoise Correction Including Monomer Deformations

The equations so far have assumed that the monomer geometries do not change as a complex is
formed. However, for strongly interacting molecules, the monomers may be significantly deformed
upon complexation. As before, we can estimate the BSSE for monomer A as the difference in
energy between monomer A in the monomer basis and monomer A in the dimer basis. However,
if the geometry of A changes significantly upon complexation, then we need to use the geometry
of A as it appears in the cluster, not the geometry of the isolated monomer. We can clarify this
using superscripts to denote the geometry used for the computation. The BSSE is now estimated
as:

EBSSE,A = EAB
A (AB)− EAB

A (A), (4)

EBSSE,B = EAB
B (AB)− EAB

B (B),

where EAB
A (AB) means the energy of monomer A as it exists in the AB dimer, evaluated in the AB

basis. Before, the interaction energy was defined as the energy change as two rigid monomers are
brought together from infinite separation into a complex. Now let us define the energy difference
between the complex and infinitely separated monomers as the binding energy:

∆Ebind,AB = EAB
AB(AB)− EA

A(A)− EB
B(B), (5)

where the form of the equation is the same as for ∆Eint,AB in Eq. (1), but it is now under-
stood that the geometries of A and B in the complex AB may be different than in the isolated
monomers. (Note: this binding energy is defined as a negative number, like ∆Eint(AB), but it is
often customary to report the negative of this quantity to make binding energies positive).

Now, when we subtract these BSSEs in Eq. (4) from the binding energy, the monomer energies
in the monomer basis do not necessarily cancel, and we obtain

∆ECP
bind,AB = EAB

AB(AB)− EA
A(A)− EB

B(B)−
[
EAB

A (AB)− EAB
A (A)

]
−

[
EAB

B (AB)− EAB
B (B)

]
. (6)

It is convenient to rewrite the above result in this form:

∆ECP
bind,AB =

[
EAB

AB(AB)− EAB
A (AB)− EAB

B (AB)
]
+

[
EAB

A (A)− EA
A(A)

]
+

[
EAB

B (B)− EB
B(B)

]
,

(7)
or as

∆ECP
bind,AB = ∆ECP

int,AB + Edef,A(A) + Edef,B(B), (8)

where ∆ECP
int,AB is the interaction energy, generalized from Eq. (1) to now allow for deformable

monomers,
∆ECP

int,AB = EAB
AB(AB)− EAB

A (AB)− EAB
B (AB). (9)
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Edef,A(A) is the “deformation energy” of monomer A (the energy required to deform monomer A
from its equilibrium geometry to the geometry it has in the complex, or EAB

A (A) − EA
A(A)), and

likewise Edef,B(B) is the deformation energy of monomer B.

Of course, if the monomers are rigid, the deformation energies are zero, and ∆ECP
bind,AB =

∆ECP
int,AB.

As pointed out by van Duijneveldt et al.,3 it may be advantageous to use different theoretical
methods to compute ∆ECP

int,AB and the deformation energies; the deformation energies will typically
be much easier to compute, whereas ∆ECP

int,AB is a more subtle quantity and may require large basis
sets and/or elaborate descriptions of electron correlation.

Counterpoise Corrected Total Energies

Above, we discussed how the counterpoise correction can be applied to yield interaction energies
that are hopefully more accurate, because they subtract an estimate of the overbinding due to
BSSE. A researcher may be interested not only in energetics at a given geometry, but also in the
optimum geometry for a van der Waals dimer. In that case, if they use the usual dimer energy
EAB

AB and its gradient, then the resulting optimized geometry will be contaminated by BSSE, and
the intermolecular distance will typically be underestimated.

Optimizers typically expect to work using total energies, like EAB
AB , rather than interaction

energies like Eq. (9). This is not a problem, because we can apply the counterpoise correction also
to a total energy — we simply remove the BSSE from the dimer energy:

ECP
tot,AB = EAB

AB(AB)− EBSSE,A − EBSSE,B, (10)

= EAB
AB(AB)−

[
EAB

A (AB)− EAB
A (A)

]
−

[
EAB

B (AB)− EAB
B (B)

]
.

Optimizations proceed much more efficiently if one has analytic gradients of the energy with
respect to nuclear perturbations. This is not a problem in principle, as one simply differentiates
each term of the above equation, so that the CP-corrected gradient is just a sum of five indi-
vidual gradients (although most qunatum chemistry programs do not have built-in support to
automatically compute such composite gradients).

Alternatively, one could also attempt to optimize the counterpoise-corrected interaction energy
∆ECP

int,AB, Eq. (9), directly. This is apparently simpler, because Eq. (9) involves only three terms
(and its overall gradient thus is a sum of three gradients). However, this will be appropriate only
if the monomers are constrained to be rigid. Only in that case will the minimum of ∆ECP

int,AB

be the same as the minimum of ECP
tot,AB. Comparing the equations, one can see that ECP

tot,AB =
∆ECP

int,AB +EAB
A (A)+EAB

B (B). Only if the monomers are rigid will we have EAB
A (A) = EA

A(A) and
EAB

B (B) = EB
B(B), in which case the difference between ECP

tot,AB and ∆ECP
int,AB is simply a constant.
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If the monomers are allowed to deform when they approach each other in the dimer, then
optimizing ∆ECP

int,AB could yield an unphysical geometry: the monomers could greatly deform to
give the greatest possible stabilization of ∆ECP

int,AB, but the geometry deformation penalty would
not be accounted for. It would be accounted for if optimizing ECP

tot,AB instead, because monomer
deformations will raise the energy of the terms EAB

A (A) and EAB
B (B).

Counterpoise Correction in Clusters

So far, we have only considered dimers. It is also possible to define a counterpoise correction for
trimers and larger clusters. However, there is not a unique way to do so. One approach, analogous
to the dimer counterpoise correction, is to evaluate the interaction energy as the energy of the
cluster minus the energies of the monomers, all evaluated in the supersystem basis.3 For a trimer,
this would be

∆ECP
int,ABC = EABC

ABC (ABC)− EABC
A (ABC)− EABC

B (ABC)− EABC
C (ABC). (11)

This is called the “site-site functional counterpoise” (SSFC) corrected interaction energy, or simply
a “counterpoise” corrected trimer energy.10

These trimer interaction energies may be broken down into their two-body and three-body
components, according to the definitions of Hankins, Moskowitz, and Stillinger.11 The two-body
interactions are defined as

∆2ECP
int,AB = EABC

AB − EABC
A − EABC

B (12)

∆2ECP
int,AC = EABC

AC − EABC
A − EABC

C (13)

∆2ECP
int,BC = EABC

BC − EABC
B − EABC

C (14)

The total interaction energy is then written as a sum of these two-body interaction energies plus
a three-body interaction energy,

∆ECP
int,ABC = ∆2ECP

int,AB +∆2ECP
int,AC +∆2ECP

int,BC +∆3ECP
int,ABC (15)

The total interaction energy can be computed according to equation 11 above, so that the three-
body term is:

∆3ECP
int,ABC = ∆ECP

int,ABC −∆2ECP
int,AB −∆2ECP

int,AC −∆2ECP
int,BC (16)

Note that in the above many-body expansion, we did not specify the basis set. We could use the
supersystem basis for all terms, in which case this would be consistent with the SSFC/counterpoise
procedure. Alternatively, in a procedure called the Valiron-Mayer Functional Counterpoise (VMFC)
correction,12 one evaluates the two-body terms in Eq. (15) according to the normal Boys-Bernardi
counterpoise correction, but the three-body term in Eq. (16) entirely in the trimer basis — mean-
ing that the 2-body terms in this equation are recomputed in the trimer basis for the purpose of
obtaining ∆3ECP

int,ABC.
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Intramolecular BSSE

Our discussion so far has considered complexes of discrete molecules. However, in principle, there
is no reason why BSSE would not also affect single molecules; one part of the molecule may be
stabilized by accessing basis functions from other parts of the molecule, and if these two parts can
come in and out of contact, then there is a significant possibility of an imbalance in the effective
size of the basis set as a function of intramolecular geometry. Asturiol, Duran, and Salvador
showed that artificial puckering of aromatic rings like benzene at certain levels of theory (caused
by imbalanced basis sets) can be alleviated by applying intramolecular counterpoise corrections.13

Valdés et al. have shown14 significant intramolecular BSSE effects in [n]Helicenes and in the
Phe-GLy-Phe tripeptide; they argue that in systems where there can be significant noncovalent
interactions between different parts of the molecule, then correlated electronic structure methods
such as MP2 and CCSD(T) must be used with great caution unless some attempts to correct
for intramolecular BSSE are made — such as using larger basis sets (larger than aug-cc-pVDZ,
6-311G, or TZVP) or using intramolecular counterpoise corrections.

One can apply the counterpoise correction to a single molecule by dividing the molecule into
fragments; the BSSE error for each fragment in the presence of the ghost functions from the rest of
the molecule can be evaluated and subtracted from the total energy. The only problem with this
approach is that there is no unique way to define the fragments. Perhaps the most well-defined
procedure is to break up the molecule into atoms and evaluate the BSSE for each atom; however,
this leads to 2N computations for molecules with N atoms, which seems excessive.
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