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At times there appears to be a confusion in the literature regarding the computational scaling
of the configuration interaction method. For example, Gershgorn and Shavitt claim [1] that CI
scales as O(nm+2), where n is the number of orbitals, and m is the excitation level (e.g., 2 for
CISD). However, it is commonly held that CISD actually scales as O(n6); for CISDTQ, various
scalings are given, but the most common one is O(n10). This would seem to imply a general scaling
rule of O(n2m+2), in contradiction to the former rule. These notes explain the scaling of the CI
method and demonstrate that, depending on circumstances, either limit may be appropriate. For
the present purposes, it will suffice to focus simply on Slater determinants rather than other
possible N -electron basis functions, such as configuration state functions (CSF’s).

For present purposes, it is sufficient to work with spin orbitals. Typically, the dimension of
the CI space is dominated by determinants with the maximum excitation level, m. Thus,
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with nv orbitals unoccupied in the reference (i.e., virtual orbitals). Most CI procedures solve only
for the lowest or lowest few eigenvectors, via an iterative procedure. In such situations, the scaling
is much less than the O(N 3

det) typical of standard matrix diagonalization methods. The most
expensive step in iterative procedures such as the Davidson method [2] is the construction of the
so-called σ vectors,

σi = Hbi (2)

where bi belongs to a set of trial vectors which is expanded each iteration until convergence is
reached. If the Hamiltonian matrix H were formed directly, this procedure would require O(N 2

det)
operations. This is never actually done because the storage requirements would be too great, and
such an approach ignores the fact that the Hamiltonian contains only two-body terms, so that the
majority of the matrix elements are zero.

Each element of a trial vector bi need only be multiplied by the nonzero elements of H.
The Hamiltonian will connect a maximally excited determinant with other maximally excited
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determinants and with other determinants having excitation level m ≥ m′ ≥ m− 2. The number
of interacting determinants is roughly
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which we further approximate as
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Each element in bi must be multiplied by the relevant nonzero matrix elements, leading to an
overall operation count on the order of

O(Nmnm
v

{

m2n2
v +m2N2 +m2Nnv

}

). (5)

Except for full CI, we typically expect N,nv >> m. Furthermore, we almost always have nv > N ,
so that the leading term becomes O(Nmn2+m

v ). Thus the final results are

O(Nmn2+m
v ) =

{

n2m+2 if N ∼ nv >> m
nm+2 if nv >> N,m.

(6)

These results show that CISD and CISDTQ will scale as O(n6) and O(n10), respectively, for
typical cases, and as O(n4) and O(n6) for very large numbers of orbitals or a small number of
active electrons.

For very high levels of excitation, including full CI, the number of interacting matrix elements
for a given determinant becomes approximately N 2n2, so that the computational cost becomes
roughly

OFCI(NdetN
2n2) (7)

where we have replaced the term Nmnm
v with the actual number of determinants, Ndet. For

comparison, the determinant full CI algorithm of Knowles and Handy [3] scales as O(Ndetn
4),

while the algorithm of Olsen et al. [4] and similar approaches scale as O(NdetN
2(n − N/2)2) for

a closed-shell system.
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