next up previous
Next: Unrestricted Hartree-Fock References Up: CIS Energy Equations Previous: CIS Energy Equations

Restricted Hartree-Fock References

Now consider the case of a closed-shell RHF reference determinant. In this case, $F_{pq} = \delta_{pq} \epsilon_{p}$, so that $\sigma_0$becomes zero. $\sigma_{ia}$ simplifies to

\begin{displaymath}\sigma_{ia} = c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_j^b \langle aj \vert\vert ib \rangle.
\end{displaymath} (23)

Conserving Ms requires that the spins of j and b are equal. Therefore,

\begin{displaymath}\sigma_{ia} = c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_...
...{b}}
\langle a\overline{j} \vert\vert i\overline{b} \rangle.
\end{displaymath} (24)

After integrating over spin, this becomes in chemists' notation

\begin{displaymath}\sigma_{ia} = c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_...
...}\overline{b}} c_{\overline{j}}^{\overline{b}}
(ai \vert jb).
\end{displaymath} (25)

Time-reversal symmetry imposes certain conditions on the CI coefficients. In alpha and beta string notation [5], for Ms=0 cases,

 \begin{displaymath}
c(I_{\alpha},I_{\beta}) = (-1)^S c(I_{\beta}, I_{\alpha}).
\end{displaymath} (26)

An analogous equation also holds for $\sigma$. This means that for a closed shell RHF reference, $c_i^a = c_{\overline{i}}^{\overline{a}}$( $\sigma_i^a = \sigma_{\overline{i}}^{\overline{a}}$) for singlets, and $c_i^a = -c_{\overline{i}}^{\overline{a}}$ ( $\sigma_i^a =
-\sigma_{\overline{i}}^{\overline{a}}$) for triplets; thus only half of the CI coefficients must be computed explicitly. These sign rules are also evident from the observation that $\vert \Phi_i^a \rangle$ and $\vert \Phi_{\overline{i}}^{\overline{a}} \rangle$ are not spin eigenfunctions, but that the total CI wavefunction will be a spin eigenfunction (if the required determinants are present in the CI space). Using the determinant sign convention of Szabo and Ostlund [6], spin eigenfunctions (or CSFs) associated with the above determinants are
  
$\displaystyle \vert ^1\Phi_i^a \rangle$ = $\displaystyle \frac{1}{\sqrt{2}}
\left(
\vert \Phi_i^a \rangle + \vert \Phi_{\overline{i}}^{\overline{a}} \rangle
\right)$ (27)
$\displaystyle \vert ^3\Phi_i^a \rangle$ = $\displaystyle \frac{1}{\sqrt{2}}
\left(
\vert \Phi_i^a \rangle - \vert \Phi_{\overline{i}}^{\overline{a}} \rangle
\right).$ (28)

Using these relationships between CI coefficients, we obtain
$\displaystyle ^1\sigma_i^a({\rm RCIS})$ = $\displaystyle c_i^a (\epsilon_a - \epsilon_i)
+ \sum_{jb} c_j^b \left[ 2 (ai \vert jb) - (ab \vert ji) \right]$ (29)
$\displaystyle ^3\sigma_i^a({\rm RCIS})$ = $\displaystyle c_i^a (\epsilon_a - \epsilon_i)
- \sum_{jb} c_j^b (ab \vert ji).$ (30)

Furthermore, $^1\sigma_{\overline{i}}^{\overline{a}}({\rm RCIS}) =
^1\sigma_i^a({\rm RCIS})$ and $^3\sigma_{\overline{i}}^{\overline{a}}({\rm RCIS}) = -
^3\sigma_i^a({\rm RCIS})$.

Consider how equations (20)-(22) change when spin is explicitly accounted for. There will be two pseudodensity matrices,

  
$\displaystyle {\tilde P}_{\lambda \sigma}^{\alpha}$ = $\displaystyle \sum_{jb} C_{\lambda j}^* c_j^b C_{\sigma b}$ (31)
$\displaystyle {\tilde P}_{\lambda \sigma}^{\beta}$ = $\displaystyle \sum_{\overline{j}\overline{b}} C_{\lambda j}^*
c_{\overline{j}}^{\overline{b}} C_{\sigma b}.$ (32)

Due to equation (26), ${\tilde P}_{\lambda
\sigma}^{\alpha} = {\tilde P}_{\lambda \sigma}^{\beta}$ for singlets, and ${\tilde P}_{\lambda \sigma}^{\alpha} = -{\tilde P}_{\lambda
\sigma}^{\beta}$ for triplets. Thus it is necessary to form only one of the Fock-like matrices, ${\tilde F}_{\mu \nu}^{\alpha}$ or ${\tilde
F}_{\mu \nu}^{\beta}$. The former is constructed as
$\displaystyle ^1{\tilde F}_{\mu \nu}^{\alpha}$ = $\displaystyle \sum_{\lambda \sigma}
\left[
2 (\mu \nu \vert \lambda \sigma)
- (\mu \sigma \vert \lambda \nu)
\right] {\tilde P}_{\lambda \sigma}^{\alpha}$ (33)
$\displaystyle ^3{\tilde F}_{\mu \nu}^{\alpha}$ = $\displaystyle - \sum_{\lambda \sigma}
(\mu \sigma \vert \lambda \nu) {\tilde P}_{\lambda \sigma}^{\alpha}$ (34)

Finally ${\tilde F}_{ia}^{\alpha}$ is constructed according to eq (22). In terms of these quantities, the ${\mathbf \sigma}$ vector can be written
$\displaystyle ^1\sigma_i^a({\rm RCIS}) =
^1\sigma_{\overline{i}}^{\overline{a}}({\rm RCIS})$ = $\displaystyle c_i^a (\epsilon_a - \epsilon_i) + {^1{\tilde F}_{ia}^{\alpha}}$ (35)
$\displaystyle ^3\sigma_i^a({\rm RCIS}) =
- ^3\sigma_{\overline{i}}^{\overline{a}}({\rm RCIS})$ = $\displaystyle c_i^a (\epsilon_a - \epsilon_i) + {^3{\tilde F}_{ia}^{\alpha}},$ (36)


next up previous
Next: Unrestricted Hartree-Fock References Up: CIS Energy Equations Previous: CIS Energy Equations
C. David Sherrill
2000-04-18