- ... electrons
^{1}
- According to the
antisymmetry principle for fermions, of which the Pauli
principle is a
direct result.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

- ... way.
^{2}
- Some texts talk
about the ``average'' electron repulsion term in the Fock operator;
I find this misleading in that Hartree-Fock uses the
*same*
instantaneous interelectron repulsion term as CI--it's the same
Hamiltonian! The restriction to a single Slater determinant is what
causes the averaging of interelectron repulsions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

- ...
expect!
^{3}
- However, state-of-the-art determinant-based CI algorithms
often include computational simplifications if the
*M*_{s} = 0 component is
used [16].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

- ...).
^{4}
- Reference [28] contains a
minor mistake, giving (
*pq*|*rs*) as
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

- ...
spin-orbitals.
^{5}
- In the determinant CI expansion, we restrict
all determinants to a single value of
*M*_{s}.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

- ...+1.
^{6}
- This
differs somewhat from Duch [27], who
*sometimes* uses
to denote the arc *entering*
vertex (*e*, *o*) in reverse-lexical addressing.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.