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We may write the nonrelativistic Hamiltonian for a molecule as a sum of five terms:
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where i, j refer to electrons and A,B refer to nuclei. In atomic units, this is just
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The Schrödinger equation may be written more compactly as

Ĥ = T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂NN(R) + V̂ee(r), (3)

where R is the set of nuclear coordinates and r is the set of electronic coordinates. If spin-orbit
effects are important, they can be added through a spin-orbit operator Ĥso.

Unfortunately, the V̂eN(r,R) term prevents us from separating Ĥ into nuclear and electronic
parts, which would allow us to write the molecular wavefunction as a product of nuclear and elec-
tronic terms, Ψ(r,R) = Ψ(r)χ(R). We thus introduce the Born-Oppenheimer approximation, by
which we conclude that this nuclear and electronic separation is approximately correct. The term
V̂eN(r,R) is large and cannot be neglected; however, we can make the R dependence parametric,
so that the total wavefunction is given as Ψ(r;R)χ(R). The Born-Oppenheimer approximation
rests on the fact that the nuclei are much more massive than the electrons, which allows us to say
that the nuclei are nearly fixed with respect to electron motion. We can fix R, the nuclear con-
figuration, at some value Ra, and solve for the electronic wavefunction Ψ(r;Ra), which depends
only parametrically on R. If we do this for a range of R, we obtain the potential energy curve
along which the nuclei move.

We now show the mathematical details. Initially, T̂N(R) can be neglected since T̂N is smaller
than T̂e by a factor of MA/µe, where µe is the reduced mass of an electron. Thus for a fixed nuclear
configuration, we have

Ĥel = T̂e(r) + V̂eN(r;R) + V̂NN(R) + V̂ee(r) (4)



such that
ĤelΨ(r;R) = EelΨ(r;R) (5)

This is the “clamped-nuclei” Schrödinger equation. Quite frequently V̂NN(R) is neglected in the
above equation, which is justified since in this case R is just a parameter so that V̂NN(R) is just
a constant and shifts the eigenvalues only by some constant amount. Leaving V̂NN(R) out of the
electronic Schrödinger equation leads to a similar equation,

Ĥe = T̂e(r) + V̂eN(r;R) + V̂ee(r) (6)

ĤeΨ(r;R) = EeΨe(r;R) (7)

For the purposes of these notes, we will assume that V̂NN(R) is included in the electronic Hamilto-
nian. Additionally, if spin-orbit effects are important, then these can be included at each nuclear
configuration according to

Ĥ0 = Ĥel + Ĥso (8)

Ĥ0Ψ(r;R) = E0Ψ(r;R) (9)

Consider again the original Hamiltonian (1). An exact solution can be obtained by using an
(infinite) expansion of the form

Ψ(r,R) =
∑

k

Ψk(r;R)χk(R), (10)

although, to the extent that the Born-Oppenheimer approximation is valid, very accurate solutions
can be obtained using only one or a few terms. Alternatively, the total wavefunction can be
expanded in terms of the electronic wavefunctions and a set of pre-selected nuclear wavefunctions;
this requires the introduction of expansion coefficients:

Ψi(r,R) =
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where the superscript i has been added as a reminder that there are multiple solutions to the
Schrödinger equation.

Expressions for the nuclear wavefunctions χk(R) can be obtained by inserting the expansion
(10) into the total Schrödinger equation yields
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if the electronic functions are orthonormal. Simplifying further,
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At this point, a more compact notation is very helpful. Following Tully [1], we introduce the
following quantities:

Ukk′(R) = U
(el)
kk′ (R) + U

(so)
kk′ (R) (16)

U
(el)
kk′ (R) = 〈Ψk(r;R)|Ĥel|Ψk′(r;R)〉 (17)
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Note that equation (18) of reference [1] should not contain a factor of 1/2 as it does. Now we can
rewrite equations (14) and (15) as
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This is equation (14) of Tully’s article [1]. Tully simplifies this equation by one more step, removing
the term T̂ ′

kk. By taking the derivative of the overlap of 〈Ψk(r;R)|Ψk(r;R)〉 it is easy to show that
this term must be zero when the electronic wavefunction can be made real. If we use electronic
wavefunctions which diagonalize the electronic Hamiltonian, then the electronic basis is called
adiabatic, and the coupling terms Ukk′ vanish.1 This is the general procedure. However, the
equation above is formally exact even if other electronic functions are used. In some contexts it is
preferable to minimize other coupling terms, such as T̂ ′

kk′ ; this results in a diabatic electronic basis.
Note that the first-derivative nonadiabatic coupling matrix elements T̂ ′

kk′ are usually considered
more important than the second-derivative ones, T ′′

kk′ .

In most cases, the couplings on the right-hand side of the preceeding equation are small. If
they can be safely neglected, and assuming that the wavefunction is real, we obtain the following
equation for the motion of the nuclei on a given Born-Oppenheimer potential energy surface:

[

T̂N + T ′′
kk + Ukk

]

χk(R) = Eχk(R) (25)

This equation clearly shows that, when the off-diagonal couplings can be ignored, the nuclei move
in a potential field set up by the electrons. The potential energy at each point is given primarily by
Ukk (the expectation value of the electronic energy), with a small correction factor T ′′

kk. Following
Steinfeld [2], we can estimate the magnitude of the term T ′′

kk as follows: a typical contribution
has the form 1/(2MA)∇2

AΨ(r;R), but ∇AΨ(r;R) is of the same order as ∇iΨ(r;R) since the
derivatives operate over approximately the same dimensions. The latter is Ψ(r;R)pe, with pe

the momentum of an electron. Therefore 1/(2MA)∇2
AΨ(r;R) ≈ p2

e/(2MA) = (m/MA)Ee. Since
m/MA ∼ 1/10000, this term is expected to be small, and it is usually dropped. However, to
achieve very high accuracy, such as in spectroscopic applications, this term must be retained.

The Born-Oppenheimer Diagonal Correction. In a perturbation theory analysis of the
Born-Oppenheimer approximation, the first-order correction to the Born-Oppenheimer electronic
energy due to the nuclear motion is the Born-Oppenheimer diagonal correction (BODC),

EBODC = 〈Ψ(r;R)|T̂n|Ψ(r;R)〉, (26)

1The term adiabatic does not actually distinguish between eigenfunctions of Ĥel and Ĥ0. Eigenfunctions of Ĥel

will still have nonzero matrix elements U
(so)
kk′ and hence nonzero Ukk′ if spin-orbit coupling is considered.



which can be applied to any electronic state Ψ(r;R). The BODC is also referred to as the
“adiabatic correction.” One of the first systematic investigations of this effect was a study by
Handy, Yamaguchi, and Schaefer in 1986 [3]. In this work, the authors evaluated the BODC using
Hartree-Fock self-consistent-field methods (and, where relevant, two-configuration self-consistent-
field) for a series of small molecules. One interesting finding was that the BODC changes the
singlet-triplet splitting in methylene by 40 cm−1, which is small on a “chemical” energy scale but
very relevant for a spectroscopic energy scale. Inclusion of the BODC is required to accurately
model the very dense rovibrational spectrum of the water molecule observed at high energies, and
these models were a critical component in proving the existence of water on the sun [4, 5].

For many years, it was only possible to compute the BODC for Hartree-Fock or multiconfigu-
rational self-consistent-field wavefunctions. However, in 2003 the evaluation of the BODC using
general configuration interaction wavefunctions was implemented [6] and its convergence toward
the ab initio limit was investigated for H2, BH, and H2O. This study found that the absolute value
of the BODC is difficult to converge, but errors in estimates of the BODC largely cancel each
other so that even BODC’s computed using Hartree-Fock theory capture most of the effect of the
adiabatic correction on relative energies or geometries. Table 1 displays the effect of the BODC on
the barrier to linearity in the water molecule and the convergence of this quantity with respect to
basis set and level of electron correlation. Although the absolute values of the BODC’s of bent and
linear water change significantly with respect to basis set and level of electron correlation, their
difference does not change much as long as a basis of at least cc-pVDZ quality is used. For the
cc-pVDZ basis, electron correlation changes the differential BODC correction by about 1 cm−1.
Table 2 displays the effect of the BODC on the equilibrium bond lengths and harmonic vibrational
frequencies of the BH, CH+, and NH molecules [7] and demonstrates somewhat larger changes to
the spectroscopic constants than one might have expected, particularly for BH.



Table 1: Adiabatic correction to the barrier to linearity of water in the ground state (in cm−1)a

Basis Method C2v D∞h ∆Eb
e

DZ RHF 613.66 587.69 -25.97
DZ CISD 622.40 596.43 -25.97
DZ CISDT 623.62 597.56 -26.06
DZ CISDTQ 624.56 598.28 -26.28
DZ CISDTQP 624.61 598.32 -26.29
DZP RHF 597.88 581.32 -16.56
cc-pVDZ RHF 600.28 585.20 -15.08
cc-pVDZ CISD 615.03 599.15 -15.88
cc-pVDZ CISDT 616.82 600.62 -16.20
cc-pVTZ RHF 596.53 581.43 -15.10
cc-pVTZ CISD 611.89 596.73 -15.16
cc-pVQZ RHF 595.57 580.72 -14.85
aData from Valeev and Sherrill [6].
bThe difference between the adiabatic correction
for the C2v and D∞h structures.

Table 2: Adiabatic corrections to bond length and harmonic frequencies of BH, CH+, and NHa

BH CH+ NH
∆re 0.00066 0.00063 0.00027
∆ωe -2.25 -2.81 -1.38
aData from Temelso, Valeev, and
Sherrill [7].
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