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The Big Picture

• DFT improves upon Hartree-Fock by including an 
approximate treatment of the correlated motions of 
electrons (these are treated in Hartree-Fock in only an 
averaged sense)

• Treatment of electron correlation is much cheaper than in 
correlated wavefunction methods like MP2, CCSD, CCSD(T)

• Although there is a loose ordering of density functionals
from “less sophisticated” to “more sophisticated” (e.g., LDA 
to GGA to hybrid, etc.), in practice there is no reliable way 
to improve your computation by going to the “next better” 
functional.  By contrast, this is possible with wavefunction
methods: one almost always has CCSD(T)>CCSD>MP2>HF.



Hohenberg and Kohn

• First Hohenberg-Kohn theorem: The ground 
state properties of a many-electron system 
depend only on the electronic density n(x,y,z)

• Second Hohenberg-Kohn theorem: The 
correct ground state density for a system is 
the one that minimizes the total energy 
through the functional E[n(x,y,z)]

• A functional is just a function that depends on 
a function



Form of the Density Functional

• So what’s the density functional actually look 
like?  

• The Coulomb interaction for a given density 
interacting the nuclei is very straightforward to 
compute; so is the Coulomb interaction of the 
density with itself (J term)

• Coulomb (J) terms are great, but we also need to 
account for electron antisymmetry (exchange 
effects) and electron correlation effects

• Additionally, not clear how to compute kinetic 
energy as a function of the density



Form of the Density Functional



Kohn and Sham (KS)

• Compute the kinetic energy of a density by 
assuming that the density corresponds to a 
wavefunction consisting of a single Slater 
determinant (“non-interacting limit”): we know 
how to compute the kinetic energy of a Slater 
determinant (orbitals) --- looks same as Hartree-
Fock Theory

• This procedure is called Kohn-Sham DFT and is 
the most common approach (although doesn’t 
work well for extremely large systems due to 
computational cost)



Kohn-Sham Kinetic Energy



Exchange-Correlation Functional

• We can compute every piece of a Kohn-Sham DFT 
energy exactly except for the “exchange-
correlation”  piece, Exc[ρ]. 

• Unfortunately the exact exchange-correlation 
energy functional is not known and is probably so 
complicated that even if it were known it would 
not be computationally useful

• Hence, use various approximate exchange-
correlation functionals (S-VWN, B3LYP, etc.)



Kohn-Sham DFT Self-Consistent-Field 
Equations

• Much like Hartree-Fock but there’s an extra “exchange-
correlation” piece that adds approximate electron 
correlation and can handle the exchange term differently



Observations on KS DFT

• Cost is similar to HF (similar equations) but 
quality can be better because correlation is 
built in through the correlation functional

• Cost can actually be cheaper than HF if we 
replace the expensive, long-range exchange 
integrals (K terms) from HF with a shorter-
range exchange potential (which however 
might not be as accurate…)



The Exchange-Correlation Potential

Often one breaks up Exc into exchange and correlation 
parts and writes the in terms of the energy per particle, εx
and εc



Hierarchy of DFT Exchange-Correlation 
Functionals

• Local density approximation (LDA): Functional depends 
only on the (local) density at a given point.  Example: S-
VWN

• Gradient-corrected approximation (GGA): Functional 
depends on local density and its gradient.  Examples: 
PW91 and LYP correlation functionals, B88 exchange 
functional

• Meta-GGA: Functional depends on density, its gradient, 
and its second derivative.  Example: M06-L

• Hybrid DFT: Mixes in Hartree-Fock exchange.  Most 
popular example: B3LYP (hybrid GGA).  M05-2X and 
M06-2X are hybrid meta-GGA’s.



Local (Spin) Density Approximation

• Based on results for the uniform electron gas 
as a model, Dirac introduced this form for the 
exchange functional (called “Slater” exchange, 
abbreviated “S”):



Local (Spin) Density Approximation

• If the α and β densities differ (e.g., open-shell 
systems), use the local spin density 
approximation (LSDA)



Local (Spin) Density Approximation

• For the correlation energy, again use the uniform 
electron gas as a model.  Its correlation energy 
was determined numerically by Monte Carlo 
simulations and fit to an analytic form by Vosko, 
Wilk, and Nusair (VWN), to give εc

VWN.  L(S)DA 
usually implies VWN correlation

• More technical name for L(S)DA is S-VWN (Slater 
exchange plus Vosko, Wilk, Nusair correlation)

• Electron correlation can be overestimated by a 
factor of 2 when using VWN.  Bond strengths too 
large.  Need better approximations



Generalized Gradient Approximations 
(GGA’s)

• The uniform electron gas isn’t such a great model 
because in molecules, the electron density can vary 
rapidly over a small region of space

• One way to improve over LSDA is to make the 
functional depend on both the density and the 
gradient of the density 

• This leads to “gradient corrected” functionals or 
“generalized gradient approximation” (GGA) 
functionals

• Also sometimes called “nonlocal” functionals but this is 
a bad name that is fortunately falling out of favor now: 
the density and its gradient still supply only local
information 



Examples of GGA’s

• Exchange: PW86, B88 (“B”), PW91

• Correlation: LYP

• GGA’s improve over L(S)DA but are still not necessarily 
very accurate; one reason is the exchange potential 
doesn’t necessarily have the correct qualitative 
behavior

• B88 has the correct -1/r asymptotic behavior of the 
energy density but not the overall exchange potential



Hybrid Funtionals
• Introduced by Axel Becke in 1993 to provide improved 

results
• Inspired by the Adiabatic Connection Formula, a formally 

exact way to get Exc; interpolate between the real 
(interacting) system and a formal “noninteracting” limit 
where a single Slater determinant made of KS orbitals 
exactly solves the Schrödinger equation

• For 0 <  < 1, Vext() is adjusted to that the same density is 
obtained for =0 and =1



Adiabatic Connection Formula

• If Vxc is linear in , can approximate as

=0: only exchange, no correlation; 0 is a 
Slater determinant, can use HF equation for 
exchange energy

=1: Real system, unknown solution.  Can 
approximate with LSDA and add to =0 
part to give “half and half”



Becke’s 3-Parameter Hybrids

• Since GGA’s are better than LSDA, could also use 
a functional form like this (B3):

• B3LYP uses this form, with LYP for ΔEc
GGA

• B3LYP introduced in 1994 by Stephens, Devlin, 
Chabalowski, and Frisch; their computer code did 
not match their paper (confusion about VWN-1 
vs VWN-5 correlation); led to problems deciding 
about what is the “real” B3LYP



What you need to specify to run a DFT 
computation

• Molecule

• Molecular charge

• Spin multiplicity

• Basis set

• Exchange functional: S, B, B3, etc.

• Correlation functional: LYP, PW91, etc.



Observations
• DFT good for geometries, often not as good for energies
• B3LYP works really well and is hard to beat (usually)
• Minnesota functionals (M05-2X, M06-2X, M06-L, etc) seem to work 

well also (but can be sensitive to the numerical integration grid)
• Barrier heights often underestimated
• Totally fails for non-covalent interactions (just like Hartree-Fock);  fix 

with DFT-D or XDM or vdW-DFT
• Can have large errors for excitation energies to Rydberg excited 

states (fix with asymptotically-corrected functionals like CAM-
B3LYP) (DFT for excited states is called time-dependent DFT, or 
TDDFT)

• Can totally fail for charge-transfer states (fix with “range-separated 
hybrids” that include HF exchange at long range only)

• Can get wrong energetic ordering of spin states of metals (just like 
Hartree-Fock)


