Introduction to Nondynamical Correlation C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Two Types of Electron Correlation

Basis Set Correlation for H_2O with a DZ Basis

Geometry	E_{corr} (hartree) ^{<i>a</i>}
\mathbf{R}_{e}	-0.148028
$1.5 \ \mathrm{R}_e$	-0.210992
$2.0 \ \mathrm{R}_e$	-0.310067

^aData from Harrision, 1983.

"Dynamical" correlation, electrons instantaneously avoiding each other, should become *less important* at stretched geometries, since the electrons are further apart. However, the correlation energy *increases* with stretching! There must be a "nondynamical" correlation.

What Causes the Nondynamical Correlation?

- Recall the correlation energy is the difference between Full CI and Hartree-Fock.
- We know Hartree-Fock neglects instantaneous electronelectron repulsions ("dynamical correlation").
- What else is it missing? It does not account for nearly degenerate electron configurations

Simplest Example of Degeneracy: Stretched H₂

For minimal basis H₂, only two 1s functions, one on each H atom: ϕ_A , ϕ_B . Restricted Hartree-Fock orbitals determined completely by symmetry. Let overbars denote β spin.

$$\phi_{\sigma} = \frac{1}{\sqrt{2(1+S_{12})}} (\phi_A + \phi_B)$$

$$\phi_{\sigma^*} = \frac{1}{\sqrt{2(1-S_{12})}} (\phi_A - \phi_B)$$

$$\phi_{\sigma}\overline{\phi}_{\sigma}\rangle = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_{\sigma}(1) & \overline{\phi}_{\sigma}(1) \\ \phi_{\sigma}(2) & \overline{\phi}_{\sigma}(2) \end{vmatrix}$$

Expansion of the Determinant

$$\begin{split} \phi_{\sigma}\overline{\phi}_{\sigma}\rangle &= \frac{1}{\sqrt{2}} \left[\phi_{\sigma}(1)\overline{\phi}_{\sigma}(2) - \phi_{\sigma}(2)\overline{\phi}_{\sigma}(1) \right] \\ &= \frac{1}{2\sqrt{2}(1+S_{12})} \left[(\phi_{A}(1) + \phi_{B}(1))(\overline{\phi}_{A}(2) + \overline{\phi}_{B}(2)) \\ &- (\phi_{A}(2) + \phi_{B}(2))(\overline{\phi}_{A}(1) + \overline{\phi}_{B}(1)) \right] \\ &= \frac{1}{2\sqrt{2}(1+S_{12})} \left[\phi_{A}(1)\overline{\phi}_{A}(2) + \phi_{A}(1)\overline{\phi}_{B}(2) \\ &+ \phi_{B}(1)\overline{\phi}_{A}(2) + \phi_{B}(1)\overline{\phi}_{B}(2) - \phi_{A}(2)\overline{\phi}_{A}(1) - \phi_{A}(2)\overline{\phi}_{B} \\ &- \phi_{B}(2)\overline{\phi}_{A}(1) - \phi_{B}(2)\overline{\phi}_{B}(1) \right] \end{split}$$

Simplified Notation for Expanded Determinant

The expanded determinant looks like the sum of four determinants made of *atomic spin orbitals*:

$$|\phi_{\sigma}\overline{\phi}_{\sigma}\rangle = \frac{1}{2(1+S_{12})} \left[|\phi_{A}\overline{\phi}_{A}\rangle + |\phi_{A}\overline{\phi}_{B}\rangle + |\phi_{B}\overline{\phi}_{A}\rangle + |\phi_{B}\overline{\phi}_{B}\rangle \right]$$

So...what's the problem? The first and last terms are ionic valence bond structures and should not contribute to the wavefunction (they place both electrons on one of the hydrogens) as $R_{AB} \to \infty$. However, they are required by RHF. Thus, RHF does not work for bond-breaking processes in general.

RHF Energy Much Too High for Bond-Breaking

- The RHF energy associated with determinant $|\phi_{\sigma}\overline{\phi}_{\sigma}\rangle$ is $E(\text{RHF}) = 2h_{\sigma\sigma} + J_{\sigma\sigma}.$
- However, as $R_{AB} \to \infty$, we should have $E(RHF) \to 2E(H atom)$ as $R_{AB} = \infty$. This is just $h_{AA} + h_{BB}$, which at infinity is also just $2h_{\sigma\sigma} = (h_{AA} + h_{AB} + h_{BA} + h_{BB}) = h_{AA} + h_{BB}$.
- Energy is overestimated by spurious term $J_{\sigma\sigma}$ at long distances.

Thinking about Degeneracy

- Another way to view the problem of RHF with dissociation is to realize we have a degeneracy problem as $R_{AB} \to \infty$
- Recall Hartree-Fock assumes only one electron configuration is dominant
- RHF energies of the σ^2 and $(\sigma^*)^2$ configurations are both equal to $2h_{\sigma\sigma} + J_{\sigma\sigma}$ at $R_{AB} = \infty$. They are completely degenerate!
- Solution: need to mix in the other determinant by configuration interaction

Two-Determinant CI Fixes Minimal Basis H₂ Dissociation

$$|\Phi_{CI}\rangle = c_1 |\phi_{\sigma}\overline{\phi}_{\sigma}\rangle + c_2 |\phi_{\sigma^*}\overline{\phi}_{\sigma^*}\rangle$$

$$E_{CI} = \langle \Phi_{CI} | \hat{H} | \Phi_{CI} \rangle$$

= $\begin{pmatrix} c_1 & c_2 \end{pmatrix} \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$
= $c_1^2 H_{11} + c_2^2 H_{22} + 2c_1 c_2 H_{12}$

Evaluating the CI Energy

We can use Slater's Rules (see Intro to Electron Correlation) to evaluate the matrix elements H_{IJ} . We obtain

$$H_{11} = \langle \phi_{\sigma} \overline{\phi}_{\sigma} | \hat{H} | \phi_{\sigma} \overline{\phi}_{\sigma} \rangle = 2h_{\sigma\sigma} + J_{\sigma\sigma}$$

$$H_{12} = \langle \phi_{\sigma} \overline{\phi}_{\sigma} | \hat{H} | \phi_{\sigma^{*}} \overline{\phi}_{\sigma^{*}} \rangle = (\sigma\sigma^{*} | \sigma\sigma^{*})$$

$$H_{21} = \langle \phi_{\sigma^{*}} \overline{\phi}_{\sigma^{*}} | \hat{H} | \phi_{\sigma} \overline{\phi}_{\sigma} \rangle = (\sigma^{*} \sigma | \sigma^{*} \sigma)$$

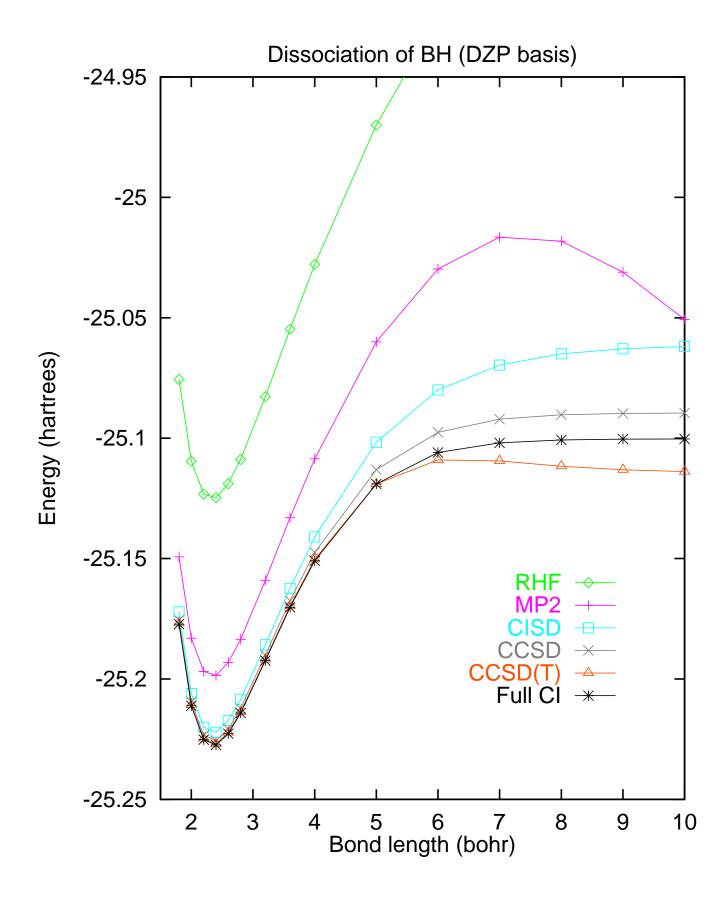
$$H_{22} = \langle \phi_{\sigma^{*}} \overline{\phi}_{\sigma^{*}} | \hat{H} | \phi_{\sigma^{*}} \overline{\phi}_{\sigma^{*}} \rangle = 2h_{\sigma^{*}\sigma^{*}} + J_{\sigma^{*}\sigma^{*}}$$

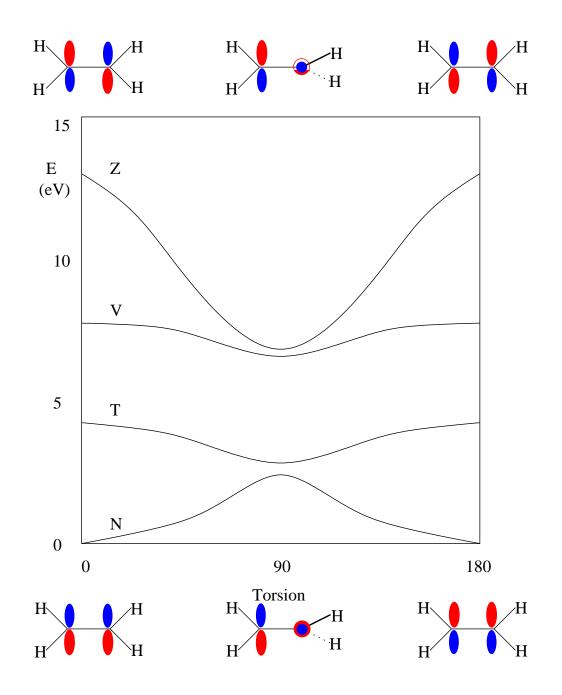
$$E_{CI} = c_1^2 (2h_{\sigma\sigma} + J_{\sigma\sigma}) + c_2^2 (2h_{\sigma^*\sigma^*} + J_{\sigma^*\sigma^*}) + 2c_1 c_2 (\sigma\sigma^* | \sigma\sigma^*).$$

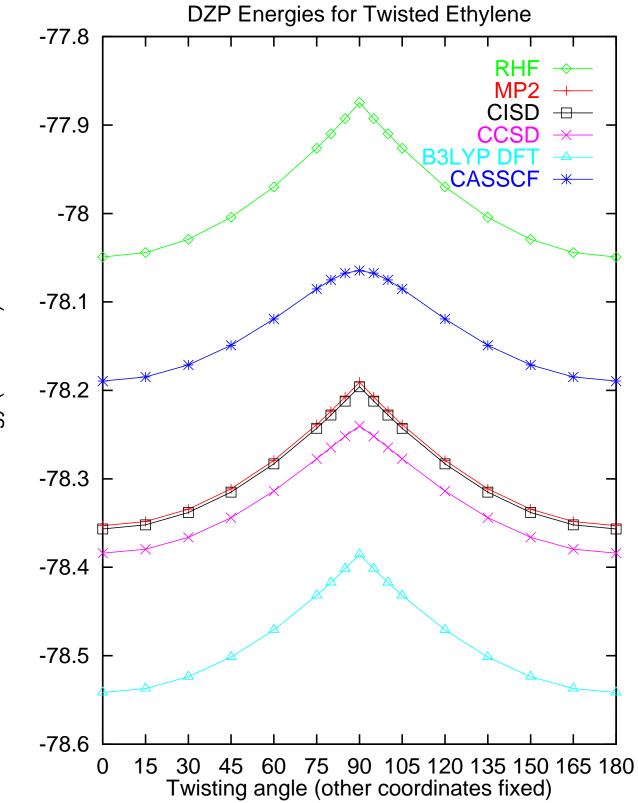
One can plug in for ϕ_{σ} and ϕ_{σ^*} (realizing integrals mixing A & B vanish as $R_{AB} \to \infty$) to show $E_{CI} = h_{AA} + h_{BB}$ if $c_1 = -c_2 = 1/\sqrt{2}$. At dissociation, 50/50 mix of σ^2 and $(\sigma^*)^2$!

Dynamical Correlation Does Not Fix Things In General

- Although doing CI works for minimal basis H₂, it does not work in general
- The orbitals need to be determined not for the one determinant $(|\phi_{\sigma}\overline{\phi}_{\sigma}\rangle)$, but for both determinants at the same time!
- With regular RHF orbitals, even correlated methods (MP2, CISD, CCSD, CCSD(T)) can fail







Energy (hartrees)

Near-Degeneracies Invalidate Perturbative Treatments

The σ and σ^* orbitals become degenerate at large distances; this is bad for energy denominators in perturbation theory.

$$\Delta E(MP2) = -\sum_{a < b, r < s} \frac{|\langle ij||ab \rangle|^2}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$

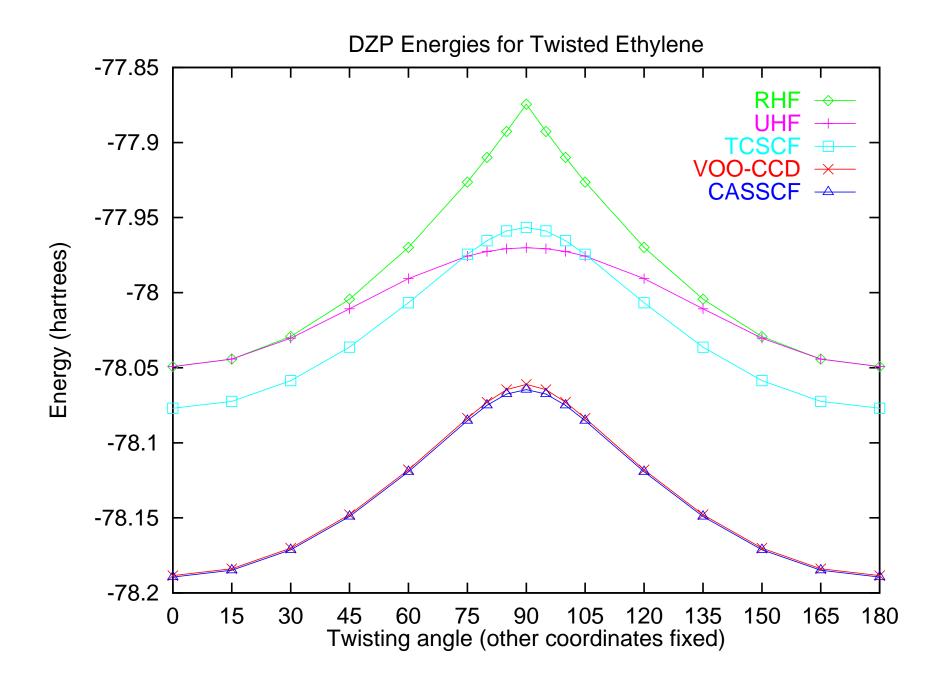
The $(\sigma^*)^2$ configuration needs to be treated on an equal footing with $(\sigma)^2$, not as a perturbation.

Nondynamical Correlation Accounts for Near-Degeneracies

- We need to include *all nearly degenerate* electron configurations (or determinants) in our starting ("reference") wavefunction
- Need to find orbitals which minimize the energy of *the mixture* of near-degenerate determinants: this is multi-configurational self-consistent-field (MCSCF)
- A special case of MCSCF which takes all possible determinants (full CI) in a given "active" orbital space is complete-activespace self-consistent-field (CASSCF)
- Need to use multi-configurational references for subsequent treatment of dynamical correlation; multi-reference CI, multi-reference PT, multi-reference CC, CASPT2, ...

A Simpler ("Cheat") Solution

- Multi-reference methods are extraordinarily complex to program and to use
- Sometimes, we can get good energies using *unrestricted Hartree-Fock references*, especially when dynamical correlation is treated subsequently
- This has the major disadvantage that any spin-dependent properties are completely wrong; the wavefunction becomes a 50/50 mixture of singlet and triplet at dissociation
- Hard to find a UHF solution for a singlet which breaks spin symmetry; need to use GUESS_MIX option and have good luck!



Summary

- Bond-breaking and bond-making reactions are hard to study accurately with quantum chemical methods, particularly at the dissociation limit
- When electron configurations become exactly or very nearly degenerate, a multi-configurational/multi-reference treatment may be necessary
- Sometimes spin-broken UHF references will work for energies but not properties
- This is an active area of current research