Introduction to Electron Correlation C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology

Molecular Orbitals Aren't Real...

Molecular orbitals are the eigenvectors of the Fock matrix in Hartree-Fock theory. Hartree-Fock is just an approximation, even if a complete orbital basis is used. Why? Two reasons, equivalent to each other:

- It *assumes* the wavefunction can be written as *one* Slater determinant. This is wrong!
- It assumes that each electron interacts with an average charge distribution due to the other electrons. This is wrong!

Electron Correlation

- Electrons repel each other according to Coulomb's law, with the repulsion energy r_{ij}^{-1} .
- Hartree-Fock *replaces* this instantaneous electron-electron repulsion with the repulsion of each electron with an *average* electron charge cloud.
- This introduces an *error* in the wavefunction and the energy. The energy error is called the *total correlation energy*. The error in the total energy is about 1 eV per electron pair in a bond or lone pair.
- Dispersion forces are due to electron correlation; expect Hartree-Fock to fail badly for van der Waals complexes.

Correlation Energy

• The *correlation energy* is defined as the difference between the true energy and the Hartree-Fock energy in a complete basis ("Hartree-Fock limit")

$$E_{corr} = \mathcal{E}_{exact} - E_{HF}^{\infty}$$

• Usually we don't know the exact energy \mathcal{E}_{exact} , but sometimes we can compute the exact energy for a given one-electron basis set. This lets us compute the basis set correlation energy (or just "correlation energy" for short...)

$$E_{corr}^{basis} = E_{exact}^{basis} - E_{HF}^{basis}$$

Why it's called Electron Correlation

The Hartree Product

$$\Psi^{HP}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N) = \chi_i(\mathbf{x}_1)\chi_j(\mathbf{x}_2)\cdots\chi_k(\mathbf{x}_N)$$

is completely uncorrelated, in the sense that the probability of simultaneously finding electron 1 at \mathbf{x}_1 , electron 2 at \mathbf{x}_2 , etc., is given by $|\Psi^{HP}(\mathbf{x}_1, \cdots, \mathbf{x}_N)|^2 d\mathbf{x}_1 \cdots d\mathbf{x}_N$ and is just

$$|\chi_i(\mathbf{x}_1)|^2 d\mathbf{x}_1 |\chi_j(\mathbf{x}_2)|^2 d\mathbf{x}_2 \cdots |\chi_k(\mathbf{x}_N)|^2 d\mathbf{x}_N,$$

which is the probability of finding electron 1 at \mathbf{x}_1 times the probability of finding electron 2 at \mathbf{x}_2 , etc....the product of the probabilities. This makes the Hartree Product an *independent particle model*. Electrons move independently; their motion is uncorrelated.

Correlation in Hartree-Fock

- Hartree-Fock is usually defined as "uncorrelated." However, the electron motions are no longer completely independent.
- For two electrons with the same spin
- For two electrons with different spins, $|\Psi_1(\mathbf{r}_1)\alpha(\omega_1)\Psi_2(\mathbf{r}_2)\beta(\omega_2)\rangle$, the probability of finding electron 1 at \mathbf{r}_1 and electron 2 at \mathbf{r}_2 is

$$P(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 = d\mathbf{r}_1 d\mathbf{r}_2 \int d\omega_1 d\omega_2 |\Psi|^2$$

$$= \frac{1}{2} \left[|\Psi_1(\mathbf{r}_1)|^2 |\Psi_2(\mathbf{r}_2)|^2 + |\Psi_1(\mathbf{r}_2)|^2 |\Psi_2(\mathbf{r}_1)|^2 \right] d\mathbf{r}_1 d\mathbf{r}_2$$

The electrons are uncorrelated.

For two electrons with the same spin, |Ψ₁(**r**₁)α(ω₁)Ψ₂(**r**₂)α(ω₂)>, the probability of finding electron 1 at **r**₁ and electron 2 at **r**₂ is

$$P(\mathbf{r}_{1},\mathbf{r}_{2})d\mathbf{r}_{1}d\mathbf{r}_{2} = \frac{1}{2} \left(|\Psi_{1}(\mathbf{r}_{1})|^{2} |\Psi_{2}(\mathbf{r}_{2})|^{2} + |\Psi_{1}(\mathbf{r}_{2})|^{2} |\Psi_{2}(\mathbf{r}_{1})|^{2} \right. \\ \left. - \left[\Psi_{1}^{*}(\mathbf{r}_{1})\Psi_{2}(\mathbf{r}_{1})\Psi_{2}^{*}(\mathbf{r}_{2})\Psi_{1}(\mathbf{r}_{2}) \right. \\ \left. + \left. \Psi_{1}(\mathbf{r}_{1})\Psi_{2}^{*}(\mathbf{r}_{1})\Psi_{2}(\mathbf{r}_{2})\Psi_{1}^{*}(\mathbf{r}_{2}) \right] \right) d\mathbf{r}_{1}d\mathbf{r}_{2}$$

Now $P(\mathbf{r}_1, \mathbf{r}_1) = 0$. No 2 electrons with same spins can be at the same place. "Fermi hole." Same-spin electrons are correlated in Hartree-Fock, different-spin electrons are not.

The *N*-electron Basis

- A collection of atom-centered Gaussian functions can be used as a basis set for expanding one-electron functions (molecular orbitals).
- We need to solve the electronic Schrödinger equation to get $\Psi_e(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$, a function of N electrons. What can we use as a basis for expanding Ψ_e ?
- Slater determinants are proper N-electron basis functions: they are functions which can be used to expand any (antisymmetric) N-electron function.
- In the limit of an infinite number of Slater determinants, any N-electron function can be expanded exactly.

What Other Determinants?

If it takes an infinite number of determinants to exactly represent the wavefunction, taking *only one*, as in Hartree-Fock theory, is not necessarily a decent approximation!

For a given set of MO's, other determinants can be formed by *putting electrons in different orbitals*. These other determinants will generally belong to *different electron configurations*.

Example: Minimal Basis H₂

There are four possible determinants, one for each spin-orbital configuration:

$$(\sigma_g)^2 \quad (\sigma_g \alpha)(\sigma_u^* \beta) \quad (\sigma_g \beta)(\sigma_u^* \alpha) \quad (\sigma_u^*)^2$$

Note that the middle two correspond to the same *spatial orbital* configuration but are different spin orbital configurations or Slater determinants.

Note also that the middle two determinants can be discarded in any expansion of the ${}^{1}\Sigma_{q}^{+}$ state of H₂. Why??

Using Symmetry

We only need determinants with the right symmetries. This includes: *spatial symmetry*, \hat{S}_z symmetry, and \hat{S}^2 symmetry. Determinants with values different than the desired state *cannot contribute* to the total wavefunction.

Of the four given determinants for H_2 ,

 $(\sigma_g)^2 (\sigma_g \alpha)(\sigma_u^* \beta) (\sigma_g \beta)(\sigma_u^* \alpha) (\sigma_u^*)^2,$

all have $M_s = 0$. The first and last are also eigenfunctions of \hat{S}^2 , but the middle two are not – we would need to take +/combinations of them. Configuration State Functions (CSF's) are combinations of one or more Slater determinants with the proper values of spatial symmetry, M_s , and S.

Configuration Interaction (CI)

- **Configuration Interaction:** Express the wavefunction as a linear combination of Slater determinants. Usually obtain expansion coefficients variationally. $|\Phi\rangle = \sum_{I} c_{I} |\Phi_{I}\rangle$.
- **Complete CI:** Arrange all electrons in all possible ways (consistent with symmetry requirements) in a complete (i.e., infinite) orbital basis set. Unattainable.
- Full CI: Arrange all electrons in all possible ways (w/ symmetry) for a finite orbital basis set. Very costly!

How Many Determinants Could There Be?

Ignoring \hat{S}^2 and spatial symmetry, but keeping \hat{S}_z symmetry, how many determinants can be formed? If there are N_{α} (N_{β}) electrons with α (β) spin, in *n* orbitals, one can keep M_s fixed by moving the α and β electrons separately.

There are very many ways to do this!

$$N_{det} = \left(\begin{array}{c} n\\ N_{\alpha} \end{array}\right) \left(\begin{array}{c} n\\ N_{\beta} \end{array}\right)$$

Number of $M_s = 0$ Determinants (CSF's in parentheses)

	Number of electrons					
Orbitals	6	8	10	12		
10	14.4×10^3	44.1×10^3	63.5×10^3	44.1×10^{3}		
	(4.95×10^3)	(13.9×10^3)	(19.4×10^3)	(13.9×10^3)		
20	1.30×10^6	23.5×10^6	240×10^6	1.50×10^9		
	(379×10^{3})	(5.80×10^6)	(52.6×10^6)	(300×10^{6})		
30	16.5×10^6	$751 imes 10^6$	20.3×10^9	353×10^9		
	(4.56×10^6)	(172×10^6)	(4.04×10^9)	(62.5×10^9)		

Full CI is Impractical

- About 1 billion determinants is the limit of what can be reached today for Full CI computations. This requires highly optimized computer code!
- For a determinant basis, this means about 12 electrons in 20 orbitals, or 10 electrons in 30 orbitals. *Mostly diatomics*.
- Need to separate the "more important" determinants from the "less important." A common way: truncate CI expansion according to excitation level.

Classification by Substitution ("Excitation") Classes

The Hartree-Fock "reference" determinant $|\Phi_0\rangle$ should be the leading term. Expect the importance of other configurations to drop off rapidly as they substitute more orbitals. Let $|\Phi_{ij\cdots k}^{ab\cdots c}\rangle$ denote a determinant which differs from $|\Phi_0\rangle$ by replacing orbitals $ij \cdots k$ with $ab \cdots c$.

 $|\Psi\rangle = c_0 |\Phi_0\rangle + \sum c_i^a |\Phi_i^a\rangle + \sum c_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \sum c_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle \cdots$ Reference Singles Doubles Triples ...

Examples of Excitation Levels

How to obtain Coefficients?

- Variationally: This is the configuration interaction method.
 Find the coefficients which minimize the total energy.
 Equivalent to diagonalizing is the basis of determinants.
- (Many-Body) Perturbation Theory: Treat the Hartree-Fock determinant $|\Psi_0\rangle$ as the zeroth-order solution, $E^{(0)} = \sum \epsilon_i$, $E^{(1)} = E_{HF}$, doubles (and singles for open-shell) contribute to $|\Psi^{(1)}\rangle$ and $E^{(2)}$, etc.

Need to truncate expansion of determinants to make it practical.

Configuration Interaction

 $|\Psi\rangle = c_0 |\Phi_0\rangle + \sum c_i^a |\Phi_i^a\rangle + \sum c_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \sum c_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle \cdots$ Reference Singles Doubles Triples Usually truncate expansion at a given excitation level. **CISD:** CI with singles and doubles. Scales as $\mathcal{O}(N^6)$. **CISDT:** CI with singles, doubles, triples. Scales as $\mathcal{O}(N^8)$. Can keep going until Full CI limit; more accurate as more *terms are added*, but also more costly! (Why no CIS?)

Configuration Interaction Matrices

It's easy to prove that the coefficients c_I which minimize the total energy E_{CI} are the same as the eigenvectors of the electronic Hamiltonian in the same basis of determinants.

Simple strategy for CI: form the Hamiltonian matrix **H** and diagonalize it. In actuality, we do this cleverly to avoid extra work.

Evaluate the matrix elements $H_{IJ} = \langle \Phi_I | \hat{H} | \Phi_J \rangle$ using *Slater's Rules*. Determinants differing by more than two spin orbitals are 0.

$$\mathbf{H} = \begin{bmatrix} \langle \Phi_0 | \hat{H} | \Phi_0 \rangle & 0 & \langle \Phi_0 | \hat{H} | D \rangle & 0 & 0 & \cdots \\ 0 & \langle S | \hat{H} | S \rangle & \langle S | \hat{H} | D \rangle & \langle S | \hat{H} | T \rangle & 0 & \cdots \\ \langle D | \hat{H} | \Phi_0 \rangle & \langle D | \hat{H} | S \rangle & \langle D | \hat{H} | D \rangle & \langle D | \hat{H} | T \rangle & \langle D | \hat{H} | Q \rangle & \cdots \\ 0 & \langle T | \hat{H} | S \rangle & \langle T | \hat{H} | D \rangle & \langle T | \hat{H} | T \rangle & \langle T | \hat{H} | Q \rangle & \cdots \\ 0 & 0 & \langle Q | \hat{H} | D \rangle & \langle Q | \hat{H} | T \rangle & \langle Q | \hat{H} | Q \rangle & \cdots \\ \vdots & \end{bmatrix}$$

Slater's Rules for Matrix Elements

Identical Determinants: If the determinants are identical, then

$$\langle \Phi_1 | \hat{H} | \Phi_1 \rangle = \sum_{m}^{N} \langle m | \hat{h} | m \rangle + \sum_{m>n}^{N} \langle mn | | mn \rangle$$

Determinants that Differ by One Spin Orbital:

$$\begin{aligned} |\Phi_1\rangle &= |\cdots mn \cdots\rangle \\ |\Phi_2\rangle &= |\cdots pn \cdots\rangle \\ \langle \Phi_1 |\hat{H} | \Phi_2\rangle &= \langle m |\hat{h} | p \rangle + \sum_n^N \langle mn | | pn \rangle \end{aligned}$$

Determinants that Differ by Two Spin Orbitals:

$$\begin{aligned} |\Phi_1\rangle &= |\cdots mn \cdots\rangle \\ |\Phi_2\rangle &= |\cdots pq \cdots\rangle \\ \Phi_1 |\hat{H}|\Phi_2\rangle &= \langle mn||pq\rangle \end{aligned}$$

Determinants that differ by More than Two Spin Orbitals:

$$\begin{aligned} |\Phi_1\rangle &= |\cdots mno \cdots\rangle \\ |\Phi_2\rangle &= |\cdots pqr \cdots\rangle \\ \langle \Phi_1 | \hat{H} | \Phi_2\rangle &= 0 \end{aligned}$$

	ISD	CIGDT	
BH 94		CISDT	CISDTQ
	4.91	n/a	99.97
$H_2O(R_e)$ 94	4.70	95.47	99.82
$H_2O(1.5 R_e) = 8$	9.39	91.15	99.48
$H_2O(2.0 R_e) = 8$	0.51	83.96	98.60
NH_3 94	4.44	95.43	99.84
HF 9	5.41	96.49	99.86
H_7^+ 9	6.36	96.87	99.96

^{*a*}Data from Harrison *et al.*, 1983, except H_7^+ data from Fermann *et al.*, 1994.

Size of CI space vs Excitation Level

	$CSF's required^a$				
Molecule	CISD	CISDT	CISDTQ	FCI	
BH	568	n/a	28 698	132 686	
H_2O	361	3 203	$17 \ 678$	$256 \ 473$	
NH_3	461	4 029	19 925	$137 \ 321$	
HF	552	6 712	48 963	$944 \ 348$	
H_7^+	$1 \ 271$	24 468	248 149	2 923 933	

^{*a*}Data from Harrison *et al.*, 1983, except for H_7^+ data from Fermann *et al.*, 1994.

Configuration Interaction Is Not Size Extensive

CISD is exact for a two-electron system like H_2

$$H_2 \xrightarrow{\uparrow\downarrow} + \xrightarrow{\uparrow\downarrow}$$

...But not exact for two noninteracting H_2 's.

Would need Quadruple excitations! Should be able to express quadruple as product of doubles, but not in CISD. Many-Body (or Møller-Plesset) Perturbation Theory

A size-extensive approach. As always in perturbation theory, we split the problem into a part we can solve easily and a perturbation, i.e.,

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}'$$

The solution is expressed as a Taylor series in λ , the perturbation strength, as

$$\mathcal{E}_{i} = E_{i}^{(0)} + \lambda E_{i}^{(1)} + \lambda^{2} E_{i}^{(2)} + \cdots$$

$$|\Psi_i\rangle = |\Psi_i^{(0)}\rangle + \lambda |\Psi_i^{(1)}\rangle + \lambda^2 |\Psi_i^{(2)}\rangle + \cdots$$

The Fock operator is zeroth-order Hamiltonian; difference between the real r_{ij}^{-1} repulsion and the Fock operator becomes the perturbation ("fluctuation potential") \hat{H}' .

$$\begin{aligned} \hat{H}_{0} &= \sum f(i) \\ &= \sum \left[h(i) + v^{HF}(i)\right] \\ \hat{H}' &= \sum_{i < j} r_{ij}^{-1} - \mathcal{V}_{HF} \\ &= \sum_{i < j} r_{ij}^{-1} - \sum v^{HF}(i) \\ v^{HF}(1)\chi_{p}(\mathbf{x}_{1}) &= \sum_{i} \langle i|r_{12}^{-1}|i\rangle\chi_{p}(\mathbf{x}_{1}) - \sum_{i} \langle i|r_{12}^{-1}|p\rangle\chi_{i}(\mathbf{x}_{1}) \\ \langle p|v^{HF}|q\rangle &= v_{pq}^{HF} = \sum_{i} \langle pi||qi\rangle \end{aligned}$$

Hartree-Fock energy is Sum of Zero and First Order Energies

$$\begin{aligned} \hat{H}_{0}|\Psi_{0}\rangle &= E_{0}^{(0)}|\Psi_{0}\rangle \\ E_{0}^{(0)} &= \sum_{i} \epsilon_{i} \\ E_{0}^{(1)} &= \langle \Psi_{0}|\mathcal{H}'|\Psi_{0}\rangle \\ &= \langle \Psi_{0}|\sum_{i < j} r_{ij}^{-1}|\Psi_{0}\rangle - \langle \Psi_{0}|\sum_{i} v^{HF}(i)|\Psi_{0}\rangle \\ &= \frac{1}{2}\sum_{ij} \langle ij||ij\rangle - \sum_{i} \langle i|v^{HF}|i\rangle \\ &= -\frac{1}{2}\sum_{ij} \langle ij||ij\rangle \\ E_{0}^{HF} &= E_{0}^{(0)} + E_{0}^{(1)} \end{aligned}$$

Second-Order Energy Expression

$$E_0^{(2)} = \sum_{I \neq 0} \frac{|\langle \Phi_0 | \hat{H}' | \Phi_I \rangle|^2}{E_0^{(0)} - E_I^{(0)}}$$

The numerator is zero for all other determinants except double excitations.

$$E_0^{(2)} = -\sum_{i < j, a < b} \frac{|\langle ab||ij\rangle|^2}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$

Second-order energy correction is negative; electron correlation stabilizes the energy. Usually perturbation theory is taken through second order, MBPT(2) (or simply MP2), which scales as $\mathcal{O}(N^5)$.

Coupled-Cluster Theory

$$|\Psi_{CC}\rangle = e^{\hat{T}}|\Phi_0\rangle$$

= $(1+\hat{T}+\frac{1}{2!}\hat{T}^2+\frac{1}{3!}\hat{T}^3+\cdots)|\Phi_0\rangle$
CCSD: $\hat{T} = \hat{T}_1 + \hat{T}_2$. Cost $\mathcal{O}(N^6)$.

CCSD(T): Adds perturbative correction for \hat{T}_3 at cost $\mathcal{O}(N^7)$.

- Improves over CISD, etc., by using products of excitations
- Size extensive version of CI: CCSD exact for N noninteracting H₂'s
- Contains higher-order "disconnected" substitutions

If $\hat{H} = \hat{H}^A + \hat{H}^B$, should have $E = E^A + E^B$ and $|\Psi\rangle = |\Psi^A\rangle |\Psi^B\rangle$. Unfortunately,

 $\begin{aligned} |\Psi_{CID}\rangle &\neq |\Psi_{CID}^A\rangle |\Psi_{CID}^B\rangle \\ (1+\hat{T}_2^A+\hat{T}_2^B)|\Phi_0^A\rangle |\Phi_0^B\rangle &\neq \left\{ (1+\hat{T}_2^A)|\Phi_0^A\rangle \right\} \left\{ (1+\hat{T}_2^B)|\Phi_0^B\rangle \right\} \end{aligned}$

However,

$$e^{\hat{T}_{2}^{A}+\hat{T}_{2}^{B}}|\Phi_{0}^{A}\rangle|\Phi_{0}^{B}\rangle = \left\{e^{\hat{T}_{2}^{A}}|\Phi_{0}^{A}\rangle\right\}\left\{e^{\hat{T}_{2}^{B}}|\Phi_{0}^{B}\rangle\right\}$$
$$|\Psi_{CCD}\rangle = |\Psi_{CCD}^{A}\rangle|\Psi_{CCD}^{B}\rangle$$

Excitation Operators

Coupled-cluster theory makes use of excitation operators that act on a reference determinant to generate excited determinants times coefficients

$$\hat{T}_{1} = \sum_{ia} t_{i}^{a} |\Phi_{i}^{a}\rangle$$
$$\hat{T}_{2} = \sum_{ijab} t_{ij}^{ab} |\Phi_{ij}^{ab}\rangle$$

With this notation, CISD is just

$$|\Psi_{CISD}\rangle = (1 + \hat{T}_1 + \hat{T}_2)|\Phi_0\rangle$$

This makes the CCSD wavefunction

$$\begin{aligned} |\Psi_{CCSD}\rangle &= e^{\hat{T}_{1}+\hat{T}_{2}}|\Phi_{0}\rangle \\ &= (1+\hat{T}_{1}+\hat{T}_{2}+\frac{1}{2}\hat{T}_{1}^{2}+\hat{T}_{1}\hat{T}_{2}+\frac{1}{2}\hat{T}_{2}^{2}+\cdots)|\Phi_{0}\rangle \\ &= |\Phi_{0}\rangle + \sum_{ia}t_{i}^{a}|\Phi_{i}^{a}\rangle + \sum_{ij}^{ab}t_{ij}^{ab}|\Phi_{ij}^{ab}\rangle \\ &+ \frac{1}{2}\sum_{i}^{a}t_{i}^{a}\sum_{j}^{b}t_{j}^{b}|\Phi_{ij}^{ab}\rangle + \sum_{i}^{a}t_{i}^{a}\sum_{jk}^{bc}t_{jk}^{bc}|\Phi_{ijk}^{abc}\rangle \\ &+ \frac{1}{2}\sum_{ij}^{ab}t_{ij}^{ab}\sum_{kl}^{cd}t_{kl}^{cd}|\Phi_{ijkl}^{abcd}\rangle + \cdots \end{aligned}$$

Coupled-Cluster Theory: An Ab Initio Success Story

Expected Errors for Large-Basis CCSD(T)

Bond lengths	\pm 0.004 Å
Bond angles	$\pm 0.3^{\circ}$
Harmonic frequencies	+2%
Dipole moments	$\pm~0.05$ D
IR intensities	$\pm 20\%$
Excitation energies	$\pm~0.2~{\rm eV}$

Convergent *ab initio* Methods

- Ab initio methods such as CI and MBPT can be improved, in principle, by including more and more terms (and simultaneously increasing one-electron basis set size).
- CI and CC become more accurate as higher substitution levels are included (although cost grows dramatically).
- MBPT does not always improve at higher orders; the series is not guaranteed to converge. Current conventional wisdom is to stop at second order.
- Density functional theory methods are *nonconvergent* methods in that no one knows how to improve them systematically to get more and more accurate results.

	0		0			
	Basis Set					
Method	STO-3G	6-31G*	cc-pVTZ	cc-pVQZ	• • •	∞
SCF		Х				
MP2		X	X			
CISD		X	X			
CCSD		X	X			
$\operatorname{CCSD}(T)$			X	X		
CCSDT			X	X		
• • •						
Full CI						Truth

Convergence and Pauling Points