next up previous
Next: About this document ... Up: syllabus Previous: Course Website:

Lecture Schedule:

The tentative lecture schedule is given in the table below. The latest version may be found on the course website. Key dates such as drop day and holidays are subject to change by Georgia Tech. Please check the official academic calendar.

Date Topic Reading
8/20 Scope and Philosophy of Quantum Mechanics,  
  Course Outline, Applications of Quantum  
8/22 Historical first steps towards QM: 3-30
  UV catastrophe, Photoelectric effect, H atom  
  spectrum, quantization, Bohr model  
8/24 Wave-particle duality, interpretation 30-39
  of Bohr model, uncertainty principle  
8/27 Waves and the Classical Wave Equation 47-64
8/29 The Schrödinger Equation 77-85, 120-123
  (time-independent and time-dependent)  
8/31 Particle in a box, Free particle 85-101
9/3 Labor Day (School Holiday)  
9/5 Operators and Commutators 126-133,135-140
9/7 Uncertainty Principles  
9/10 Test I  
9/12 Postulates of Quantum Mechanics 113-125
9/14 Superpositions of States 120-123,133-135
9/17 Harmonic Oscillator I: Classical HO 153-162
9/19 Harmonic Oscillator II: Quantum HO 175-180, Mz. 53-61
9/21 Harmonic Oscillator III: Properties of 163-184
  HO wavefunctions  
9/24 Harmonic Oscillator IV: Vibrational spectra 163-165
9/26 3D Systems. Separability of coordinates, 195-206
  3D particle in a box  
9/28 Rigid Rotor, Spherical Harmonics 206-217
10/1 Angular Momentum 217-221, Mz. 187-190
10/3 Test II  
10/5 Vibrational-Rotational Spectra I 437-449
10/8 Fall Break  
10/10 Vibrational-Rotational Spectra II: 449-460
  Higher-order terms  
10/12 Hydrogen Atom I 221-225
10/15 Hydrogen Atom II 225-242

10/17 Approx. Methods I: Perturbation Theory 242-243, 255-262
10/19 Approx. Methods II: Variational Methods 262-276
10/22 Linear Variation Method and Secular Determinants  
10/24 Atoms I. Atomic Hamiltonian, Atomic units 287-294
10/26 Intro to Hartree-Fock method, spin 295-301
10/29 Antisymmetry, Slater Determinants 301-313
10/31 Atoms II. Electron configurations and 313-326, Handout
  term symbols, Aufbau principle  
11/2 Atoms III. Hund's rules, 319-329
  Spin-orbit effects  
11/5 Molecules. Born-Oppenheimer Approximation, 343-358
  Valence-bond theory  
11/7 LCAO MO Treatment of H$_2^+$ 358-369
11/9 Diatomics: Molecular orbitals, term symbols 369-390, Handout
11/12 Diatomics II  
11/14 Polyatomics: Hybrid orbitals, term symbols 396-409,457-460
11/16 Test III  
11/19 Introduction to Group Theory Handout
11/21 Electronic Spectra 460-484
11/23 Thanksgiving break  
11/26 Introduction to Statistical Mechanics Smith Ch. 1
  Scope, Ensemble averages, Goals Atkins Ch. 19
11/28 Canonical ensemble, Boltzmann distribution, Smith Ch. 1
  Ensemble partition functions Atkins Ch. 19
11/30 Partition functions for indistinguishable Smith Ch. 4
  particles and thermo properties Atkins Ch. 20
  (e.g., $E$, $S$, $C_v$, $H$, $A$, $G$)  
12/3 Molecular partition functions, ideal gas Smith Ch. 4
  law from stat mech + particle in a box Atkins Ch. 20
12/5 Quantum contributions to partition functions Smith Ch. 5
  and thermo properties Atkins Ch. 20
12/7 Finish and Review  

James Bradshaw
D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Valley, CA, 1983. If you have Physical Chemistry by McQuarrie and Simon, you do not need an additional book; the textbook is contained within the larger McQuarrie and Simon book. Handouts will be given for the statistical mechanics material, but you may wish to consult N. O. Smith, Elementary Statistical Thermodynamics: A Problems Approach, Plenum Press, New York, 1982.

next up previous
Next: About this document ... Up: syllabus Previous: Course Website:
David Sherrill 2007-08-16